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Abstract

The subject of this dissertation is the interaction of jets in radio galaxies and quasars
with their environments. When radio jets expand from the nucleus of an active galaxy,
they pass through the interstellar medium of the host galaxy and the neighbouring inter-
galactic medium. The pressure forces acting on the jet bend it and induce a curvature
giving rise to a non-straight shape of the jet. Another interaction occurs when expanding
jets collide with stratified clouds in the interstellar and intergalactic medium.

To model deflections produced by jet—cloud and jet—galaxy interactions, a model was
developed based on the assumption that, for a jet which expands adiabatically and has
reached a steady state, pressure balance must be maintained between the jet material and
its surrounding environment. The main consequence of the model is that the bendings
in the jets are very sensitive to their initial velocities. For instance, a jet with a high
initial Mach number will penetrate the stratified density region with an almost straight
trajectory, whereas a low Mach number jet will show pronounced curvatures.

By studying the characteristics emanating from the a jet that bends, it is possible
to set an upper limit to the maximum bending angle (the angle the jet makes with its
original straight trajectory) for which a jet will not produce an internal shock. The result
is that non-relativistic jets with a classical equation of state can only bend by no more
than ~ 75 ° whereas relativistic jets cannot be deflected more than ~ 50°.

An important interaction between jets and their surrounding environment occurs in
some radio galaxies which show alignment between their optical and radio emission, the
so called radio/optical alignment effect. This radiation has been shown to be produced by
shock waves in small radio sources. It appears that cold clouds embedded in the interstellar
and intergalactic medium collide with the expanding jet, producing shocks which are able
to induce the observed emission. When the jets expand, they collide with cold clouds
giving rise to a natural scenario for which shock waves are produced as a result of the
collision. A model for this shock/cloud collision in one dimension has been developed.
This shows in detail that the interaction of the bow shock of the jet transmits a shock
inside the cloud and reflects back a rarefaction wave once it crosses it and collides with
the rear of the cloud.






Chapter I

Introduction

§1 Extragalactic radio jets

In the early 1900’s, observations of the elliptical galaxy M87 (NGC 4486, 3C 274 or
Virgo A) carried out by Heber Curtis (Curtis, 1918) revealed a “curious straight jet ...
apparently connected with the nucleus by a thin line of matter”. These optical observations
were not followed up by Curtis and it was not until the development of radio astronomy in
the 1960’s that jets emanating from the nuclei of certain galaxies became a major theme
of research in astrophysics.

The birth of modern radio astronomy began with Karl Jansky who, in May 1933,
announced the discovery of the radio emission of our Galaxy (Longair, 1995). His obser-
vations were made at 20.5 MHz with a radio antenna built to identify natural sources of
radio noise which could interfere with radio transmissions. Grote Reber, a radio engineer
and amateur astronomer, built a home radio antenna operating at a 160 MHz with which
he confirmed Jansky’s discovery and made radio scans along the galactic plane (Reber,
1940). The results of Jansky and Reber ruled out the possibility that the emission could
be black body. As an alternative, Reber suggested that it might be bremsstrahlung ra-
diation. However, not long after that, Henyey and Keenan showed that this was also not
possible. The origin of this radio emission remained a mystery. The culmination of these
early radio astronomical studies was Reber’s map of the galactic radio emission (Reber,
1944).

Alfven & Herlofson (1950) were the first to propose that the galactic radio emission
might be synchrotron radiation of high energy electrons gyrating in magnetic fields in
the atmospheres of stars. In the early 1950’s, Kippenhauer and Ginzburg first applied the
synchrotron hypothesis to high energy electrons moving in the interstellar magnetic fields.
By the mid-1950s, the power-law form and the degree of polarisation of the galactic radio
spectrum provided convincing evidence that the radiation was synchrotron.

Soon after the second World War, scientists who were involved in the development of
radar began to analyse the nature of cosmic radio emission. Hey and collaborators at the

Army Operational Research Group in the United Kingdom discovered the first discrete
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Figure I.1: High resolution image of the archetypical powerful radio galaxy Cygnus A
(3C 405) at 5 GHz. Two symmetrical jets of hot fast-moving particles are generated in
the central regions of the host galaxy. The jets expand and interact with the intergalactic
medium forming radio lobes which expand for tens of kiloparsecs at the edges of the radio
galaxy (Perley et al., 1984). The source extends about 150kpc end to end. In contrast,
when the galaxy is observed at optical wavelengths, its size is less than a tenth of its
radio length.

radio source in the constellation of Cygnus. This source became known as Cygnus A (see

fig.(I.1)) and remains to date the brightest radio galaxy.

Radio astronomy groups at Cambridge, Manchester and Sydney began the construction
of more powerful telescopes to study the radio sky. In 1948, Martin Ryle discovered the
brightest discrete source in the northern hemisphere, Cassiopeia A. This object was iden-
tified by Baade & Minkowski (1954) as a supernova remnant. Baade & Minkowski (1954)
also identified the radio source Cygnus A (fig.(I.1)) with a galaxy at redshift z = 0.057.
The faint optical image had a disturbed appearance comprising two parts. They inter-
preted the structure of this galaxy as being the result of the collision of two galaxies.
Jennison & Das Gupta (1956) showed that the radio emission from Cygnus A did not
originate from the galaxy, but rather from two giant patches or radio lobes placed sym-
metrically about the galaxy on the sky. These radio structures are presumed to have a
three dimensional structure, like a dumbbell, and are often called lobes. Later, it was
shown that the double optical structure was only an illusion created by an obscuring lane
of dust.

Telescopes of even higher sensitivity and of higher angular resolution were built in
the 60’s and 70’s, particularly at the University of Cambridge, the Westerbork Observat-
ory in the Netherlands and the National Radio Astronomy Observatory (NRAO) in West
Virginia. This work culminated with the construction of the Very Large Array (VLA) in
New Mexico, which consists of 27 linked radio telescopes, each of 25 meters in diameter

configured in a Y-shaped array that span 40 kilometres. With this instrument it became
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possible to analyse the radio emission of objects like Cygnus A in detail. The type of
objects resembling Cygnus A became known as radio galazies. At the outer extremities
of the radio lobes in the bright double radio sources, hot spots, that is, compact regions
of intense radiation, were often observed. Many of the radio sources also showed bridges
or tauls, now called jets, extending from the hot spots towards the centre of the source,
in which there is often a compact region of radio emission called a core. Optical identi-
fications of these radio sources revealed that most of the powerful double radio sources
are associated with elliptical galaxies, like Cygnus A, or with a quasar’. In both cases the
core is found to coincide with the galaxy’s optical centre.

Even before the beautiful maps made by the VLA were available, theoretical consid-
erations led naturally to a picture in which the hot spots and radio lobes are powered
by jets originating in the nucleus of the host galaxy. Rees (1971) suggested that there
was a central “engine” in the core of the galaxy responsible for all the radio—emitting
electrons and magnetic fields. This central engine provided power to the giant lobes to
energize their electrons and fields through some sort of “channel”. Rees thought that the
beams, which carry power from the central core to the lobes, were made of ultra—low fre-
quency electromagnetic waves. However, theoretical calculations soon made it clear that
electromagnetic beams cannot pass through the galactic interstellar gas.

A few years later, Longair, Ryle & Scheuer (1973) generalised arguments about the
dynamical structure of the double radio sources. Instead of the beams being made up of
electromagnetic waves, they proposed that beams were made up of hot, magnetised gas.
This idea, of a gas jet was accepted by Rees and gave rise to the standard model for

powerful double radio sources, discussed later on in this Chapter.

§2 Active galactic nuclei (AGN)

By the 1960’s, astronomers began to realize that there were unusual signs of activity in
the centres of many galaxies. These galaxies had intense concentrations of blue light,
quite uncharacteristic of the standard radiation received from aggregates of stars and gas,
which are the normal sources of radiation in a galaxy. The spectrum of this new source of
light contained too much blue and ultraviolet radiation to come from even the hottest and
most massive stars. In some cases, these sources of radiation were found to be as bright as
the host galaxy, their emission often varying with time. Galaxies containing these central
sources came to be known as Active Galactic Nucler (AGN). Observations made at radio
frequencies revealed that certain classes of these galaxies contained narrow, fast jets of gas
as was briefly mentioned in the previous section.

It is likely that all galaxies posses some form of activity in their nuclei associated with

TQuasars are a class of radio sources that look like ordinary stars on photographic plates, but show
spectral emission lines with large redshifts. The name stands for quasi—stellar objects. They can outshine
an entire galaxy by more than a factor of a 1000.
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0%0ergs™! to

a supermassive black hole. The luminosities of the nuclei can range from 1
1047 ergs 1.

The classification of AGN is a very confused and confusing subject (Robson, 1996).
This is mostly because of observational problems. It is not possible to obtain full spectral
coverage for all objects and so, it is not easy to reconcile a classification based on say,
X-ray properties with that of optical emission lines of a different sample. Other problems
are historical in origin. The phrase “quasi—stellar” object is an example of this. One of the
challenges of AGN research is to infer the physical processes that take place in different
AGN assuming that they are simple, in spite of the confusing character of the observations
(Blandford, 1990).

Let us describe briefly one of the “modern” classification schemes. The observational
details of these observations can be found in Woltjer (1990) and Robson (1996), and
are clearly summarised by Begelman et al. (1984), Blandford (1990), Longair (1995) and
Reynolds (1996).

AGN can be divided into two categories, radio-loud objects, with a luminosity Ls qn, 2
102 WHz ‘st !, or radio—gquiet, for which Lsgu, < 102 WHz 'sr !, objects on the basis
of their radio properties. About 10% of all AGN are radio—loud. The rest are radio—quiet.

Radio-loud AGN emit collimated beams or jets of plasma which feed energy and
particles to the three dimensional dumbbell structures or lobes (Begelman et al., 1984;
Blandford, 1990). The jets and the lobes are sources of continuum radio emission due to
synchrotron radiation from relativistic electrons spiralling in a magnetic field in the jets
and lobes.

The flow inside the jets in radio-loud AGN may expand, or propagate, with relativistic
velocities. This is inferred from the following two observations. Firstly, high spatial
resolution radio mapping, with Very Long Baseline Interferometry (VLBI), made at epochs
separated by years show that there are blobs within the jet moving outwards from the
nucleus. In many cases the proper motion of these blobs in the sky show that the speeds
exceed the speed of light. These so—called superiuminal motions were first predicted by
Rees (1966) and they are produced as a result of relativistic motion of the blobs moving at
small angles to the line of sight to the observer (Blandford, 1990). Superluminal motion
has been the most successful interpretation of these observations, however many other
unsuccessful models have been developed to account for it (see Recami et al., 1986, for a
review of different models). Secondly, many radio-loud AGN objects, particularly FR—
II radio galaxies and radio-loud quasars as defined later, display only one jet. It is very
difficult to believe that only one—sided jets are created in symmetrical double radio sources.
In fact, it is believed that there are two jets, but due to the relativistic bulk motion of
the flow within the jet, there are significant beaming effects due to aberration (Begelman
et al., 1984; Blandford, 1990). This is believed to be the reason why counter—jets are
not observed on the radio maps. These observations imply that the bulk motion of the

plasma inside the jet has a Lorentz factor y~3-10.
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Radio—quiet AGN do not show large scale kilo parsec jets. However, some small parsec
jets have been observed in some of these sources. An outflow of bipolar radio emission,
extending less than 5kpc, is very often seen from these AGN. There are some larger scale
structures associated with this objects, but their nature is rather obscure and they might
be the result of an AGN outflow or a starburst driven superwind coming from the host
galaxy.

Radio—quiet AGN can be classified on their basis of optical/UV spectral properties.
Briefly, this classification is as follows:

O Seyfert I galazies / radio—quiet quasars. [0 Their properties are complex and
multi-component. They are often referred as broad—line or type-1 AGN because they have
broad permitted optical/UV emission lines (with full width at half maximum FWHM ~
200-20000kms™!) in the nuclear spectrum. The region from which all this emission
arises, the so called broad line region (BLR), contains dense photoionised clouds (with
an electron number density m. ~ 10°cm3) with a small volume filling factor. The op-
tical/UV spectra of these objects shows also narrow permitted and forbidden emission
lines (FWHM ~500kms™!). The gas in this region, the narrow line region (NLR), is
more tenuous that in the BLR and lies at greater distances from the core of the AGN.
Traditionally, the distinction between a Seyfert I galaxy and a radio—quiet quasar, often
referred as quasi-stellar object or QSO, was made on the basis of whether the galaxy or
AGN was discovered first.

O Seyfert II galazies. (1 The spectra of these active nuclei show narrow permitted
and forbidden emission lines very similar to those of Seyfert I galaxies. However, Seyfert 11
galaxies show no broad lines and the optical/UV continuum radiation is much weaker.

Radio-loud AGN can be sub-divided on the basis of their morphology and optical/UV
spectral properties. The strong extragalactic radio sources have been divided mainly into
two categories, the ezxtended radio sources, the bulk of their emission originating from
regions more than a kiloparsec from the nucleus of the associated galaxy or quasar, and the
compact radio sources, in which the emission comes from a region less than a kiloparsec
from the nucleus. The extended sources have a steep spectrum o~ 0.5-1f, whereas the
compact sources have a flat one o ~0-0.5. The majority of the extended radio sources
are associated with elliptical galaxies and the minority with quasars. The extended radio
sources can be divided into two main categories:

O Fanaroff-Riley type I radio galazies (FR I). O These sources are also called
edge—darkened sources because the radio surface brightness profiles fall continuously as
the distance from the nucleus towards the edge of the radio lobe increases. They are
low luminosity objects with a luminosity Lragio < 10*2ergs ™!, and usually have two anti-
parallel jets emerging from the nucleus of the source. FR I sources show narrow emission
lines coming from a NLR, but they do not show broad optical/UV lines.

O Fanaroff-Riley type II radio galazies (FR II). 0 The radio surface brightness

X

"The spectral index « is defined by Sy o v~ %, where S, is the flux density at a frequency v.
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of these sources increase as one moves towards the outer edge of the halo, where the jets
terminate in strong shocks. As a result of this, FR II radio galaxies are often referred
as edge-brightened sources. These radio sources are luminous (Lragio 2 10*2ergs™') and
usually have at most one jet with spectral index o ~0.5. They show linear polarisation
with the electric vector perpendicular to the jet. The optical characteristics of this type
of AGN are very similar to Seyfert [ galaxies, showing broad and narrow emission lines
with a strong continuum, or like Seyfert II galaxies, showing only narrow lines. When
Seyfert I-like, these object are classified as broad—iine radio galazies (BLRG) and when
Seyfert II-like as narrow—line radio galazies (NLRG).
Compact radio sources are mainly divided in two categories:

0 Radio—loud quasars. 0 The differences between BLRG and radio-loud quasars
(RLQ), also known as gquasars, is blurred. The distinction is largely made on the basis of
whether or not the active nucleus overwhelms the light from the galaxy. If this happens the
object is called a RLQ. These RLQ objects often have one-sided jets in which superluminal
motion is observed. These sources, sometimes called core—jet sources have a flat spectrum,
a~0, core and a somewhat steeper spectrum in the one—sided jet.

0 Blazars. [0 These are radio-loud objects exhibiting very strong and variable
continuum emission at all wavelengths and they have a high optical linear polarisation.
The emission lines in these sources are either very weak or absent in the optical/UV
spectrum. When these emission lines are present, the objects are classified as optically
violent variable (OVV) quasars and when these lines are absent the sources are referred

as BL Lac objects, after the first example of this last to be discovered.

§3 Unified model for AGN

The idea of unification for different types of active galactic nuclei came about when it was
realized that projection effects must play an important role in the interpretation of some
of these sources. Much effort has been expended in determining to what extent different
types of AGN are simply different manifestations of the same object viewed from different
angles.

The first convincing evidence that Seyfert I and Seyfert II galaxies are one and the
same object was put forward by Antonucci & Miller (1985) from studies of the Seyfert II
galaxy NGC 1068. They observed polarised scattered broad line emission which was as
broad as the broad permitted lines seen in Seyfert I galaxies. These observations gave
rise to what has become the standard model for the unification of Seyfert I and Seyfert II
galaxies. There exists a “obscuring torus” centred about the nucleus of the galaxy which,
when observed at a small angle to the axis of the torus, the active nucleus and the broad-
line regions are observed. The object is classified as a Seyfert [ galaxy. If the axis of the
torus is observed at a large angle to the line of sight, only the narrow-line regions, located

further away from the nucleus are observed.
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Hot spot

Figure I.2: Structure and mechanism of strong radio sources. A well collimated flow
of relativistic material (electron—positron plasma) expands into the intergalactic and
interstellar medium of a galaxy buried in the nucleus of the AGN. As the jets expand
they form a cavity or cocoon made of jet material which is made of gas from the jet as
1t 1s recycled back towards the nucleus or core of the source. The termination of the jets
occur on a three dimensional dumbbell structure called lobe. The brightest region in the
lobes, and the whole source is called hot spot. They are the product of the collision of the
jets with the interstellar or intergalactic medium as they expand. The expansion of the
cocoon into the interstellar or intergalactic medium produces a bow shock. Behind this
bow shock, lies a region of shocked interstellar or intergalactic medium material which is
the interface between the cocoon and the external medium. The boundary between the
cocoon and the shocked intergalactic medium is a contact discontinuity. This diagram
was taken from Begelman & Rees (1996).

Another unification scheme, first proposed by Barthel (1989a,b), has been developed
for strong radio sources. The idea behind this unification is that radio galaxies and radio
quasars are the same class of object, viewed at different angles. The model suggests
that there is an obscuring torus at the centre of radio galaxies; when the observer views
the source within a cone of half-angle roughly 45° with respect to the axis of the radio
source/torus, the object is identified as a quasar. When the torus hides the active nucleus
from the observer, the source is identified as a radio galaxy; when the source is viewed
very near the axis of the radio source, the emission of the relativistic flow inside the jet is
enhanced because of relativistic beaming and the objects are identified as blazars.

As a result of observations of powerful double radio galaxies, Scheuer (1974) developed
what has become the standard model for this type of radio sources (see fig.(I.2)). Thereis
a supermassive blackhole (Begelman et al., 1984; Blandford, 1990) located in the centre of
the active galaxy and a pair of relativistic (most probably) electron—positron continuous
beams, or jets, expand into the interstellar and intergalactic medium of the source. Each

jet forms a very strong shock at its end and the regions where the jet interacts with
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the intergalactic and interstellar medium are identified in radio maps as hot spots. The
shocked material from the head of the jet is recycled back towards the galaxy and forms
a cavity or cocoon which is effectively a waste basket from the jet material. The cocoon
is identified with the extended radio lobes of the radio source. The cocoon and the
jet are assumed to be in pressure equilibrium. The expansion of the cocoon into the
external medium, that is, the intergalactic or interstellar medium of the host galaxy,
produces a bow shock. Behind this bow shock there is a region of shocked interstellar or
intergalactic medium. The boundary between this shocked material and the cocoon has

to be necessarily a contact discontinuity.

§4 Fluid dynamics of jets

The simplest way to understand the flow of these relativistic jets is to use conservation
laws (Begelman et al., 1984; Blandford, 1990). In what follows we will use some of the
basic equations derived in Chapter II. This section is included here for consistency with
the discussion of jets.

Let us first discuss the case of non-relativistic jet flow, with a polytropic index y=5/3.
It is simplest to approximate the jet as a one dimensional flow of variable cross section
area A. The rate at which mass is injected into the jet in time t, the discharge, is M.
The flow inside the jet has a velocity v. Using egs.(10.2)-(10.3) it follows that the total
energy (kinetic and internal) of the flow inside the jet with respect to time —the power, is
given by (Blandford, 1990):

L:%Mvz (1 +%) (4.1)

where M is the Mach number of the flow. It follows from the derivation of this relation
that the first term inside the parenthesis on the right hand side of eq.(4.1) is the bulk
kinetic energy transported by the fluid. The second term is the transport of the enthalpy,
that is, the internal energy plus the work pV, where V is the volume. If the jet is steady,
the thrust, that is the rate of change of momentum with respect to time, is given by
(Blandford, 1990):

P =My (1—5%). (4.2)

The first term on the right hand side of eq.(4.2) is the rate of supply of bulk momentum
flux and the second term is contributed by the gas pressure p. When the flow is highly
supersonic, that is M > 1, it follows from egs.(4.1)-(4.2) that the bulk motion dominates.
The simplest assumption to make is that the jet expands adiabatically and that it is

stationary. Under these circumstances, the power and discharge, given by M = pAv are
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constants. The mass density is represented by p. We assume that the jet is in pressure

equilibrium with its surroundings.

Since the discharge is constant and because the gas is by assumption adiabatic, it
follows that p x A~'v~! « p3/>. Thus, the Mach number and the velocity within the jet

scale as:

Mo p *PA7 and v x p3PAT, (4.3)

respectively. It follows from eq.(4.3) that the area, as a function of the pressure for a
given luminosity, passes through a minimum. This minimum occurs when the velocity
of the jet attains the local velocity of sound (Blandford, 1990). In other words, a jet
accelerates to supersonic speeds by passing through a converging—diverging or De Laval
nozzle (Begelman et al., 1984; Landau & Lifshitz, 1995). It can be shown that in the
subsonic portion of the flow, the pressure and density are approximately constant and so,
according to eq.(4.3), the area decreases inversely proportional to the velocity: A o 1/v.
In contrast, for the supersonic regime the velocity is almost constant. Using eq.(4.3), this
implies that the area increases as A o< p~3/5. Very often (Binney & Tremaine, 1997) the
pressure profile in a galaxy scales with the inverse of the square of the radial coordinate r
measured from the centre of the galaxy, that is p oc r—2. This implies that the angle made
by the jet width and the axis of the radio source decreases as A'/2r—1 « r—2/3. Thus,
we have just proved that a supersonic jet can be collimated as the pressure diminishes,

regardless of the expansion of its cross sectional area.

The thrust in an adiabatic jet is not constant. It actually diminishes during subsonic
propagation and increases in the supersonic regime. This occurs because the surface of
the jet is not exactly parallel to the mean flow velocity and an external pressure force
acting parallel to the jet changes its momentum (Begelman et al., 1984; Blandford, 1990).

Let us consider now a fully relativistic jet. The assumptions made are that the fluid
inside the jet is an ultra-relativistic plasma with an equation of state p = e/3 x n*/3,
where e is the proper internal energy per unit proper volume and n the number of particles
per unit proper volume. The relativistic power L can be written down directly using the

fact that, if 7™ is the energy—momentum tensor and c the speed of light, then ¢7°% is

the energy flux density vector (see section §8):

L = 4py?vA = const, (4.4)

where v is the standard Lorentz factor. Since the particle number has to be conserved, it

follows from the definition of the continuity equation, eq.(9.1), that
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nyvA = const. (4.5)

Substitution of eq.(4.4) into eq.(4.5) implies that:

2
Ax L (4.6)

v
As in the non-relativistic case, the area A is again minimised at the point where the
flow is transonic. The thrust is given by the space components of the energy—momentum

tensor:

,UZ
p= (4y2—2 + 1) PA. (4.7)
C

The thrust changes in exactly the same way as its non-relativistic counterpart does.
Real astrophysical jets do not satisfy necessarily the assumptions we made above. This
is because in a real jet, there will be a velocity shear across the jet and most probably
turbulence combined with internal shocks inside the jet will develop. There will also
be radiative losses and internal dissipation causing particle acceleration. Not even the
mass density flux will be constant along the jet, because it is expected that jets entrain
gas from the surrounding environment. Finally, perhaps the most important omission
from the considerations discussed above is the fact that jets might well be hydromagnetic
(Blandford, 1990). Nonetheless, the whole picture provides a framework for studying more

detailed effects of the physics of these sources.

§5 Bending of jets in radio galaxies

As jets in radio galaxies expand, they interact with their surrounding environment. There
are many examples in which the jets, rather than having a straight trajectory, show changes
in their morphology due to interaction with their surroundings induced by different phys-
ical mechanisms.

Dramatic curvature is observed in certain FR II radio sources, particularly those known
as radio trails or head-tail objects. A good illustration of of such a source is NGC 1265
shown in fig.(I1.3) (see O’Dea & Owen (1986) for detailed multifrequency VLA maps of the
source). The jets in this radio galaxy are strongly curved giving the source a semicircular
shape, with the host galaxy at the pole. The curvature of the jet is attributed to the motion
of the host elliptical galaxy through the high density intracluster medium which results in
a significant ram pressure on the radio emitting material of the jet (Begelman et al., 1984).

Indeed, the path of the jet can be determined from Euler’s equation of hydrodynamics in
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Figure 1.3: The prototype radio tail galaxy NGC1265 (Begelman & Rees, 1996). An
intergalactic wind directed upwards in the image hits the radio galaxy and produces
enough ram pressure on the jets to cause them to bend.

its classical form (Jaffe & Perola, 1973; Begelman et al., 1979; Christiansen et al., 1981;
de Young, 1991) or its relativistic generalisation (O’Dea, 1985). In the classical case, the

bending equation takes the form:

2 2
;U3 v
oY _ p]; 9. (5.1)

P

Rb end

for a jet with density p; and internal gas constant velocity v. The density of the inter-
galactic (or external) medium is p. and vy is the velocity of the host galaxy with respect to
the intracluster medium. The radius of curvature of the jet is Ryeng and the pressure scale
length, or the scale over which the ram pressure acting on the beam changes, is R,,. The
pressure scale height is assumed to be equal to the width of the jet (de Young, 1991). The
meaning of eq.(5.1) is that the centrifugal acceleration exerted by the jet as it curves has
to balance the gradient in the ram pressure acting on the jet over a pressure scale height.
Integration of eq.(5.1) gives the required shape of the jets. Numerical simulations by de
Young (1991) have shown that the simplified bending equation is in very good agreement
with these more detailed computations.

Another way of inducing deflections in radio jets is caused by a combination of kinetic
and geometrical effects. For example, consider the case in which the proper motion of
the host galaxy through the intergalactic medium is attributed to the gravitational field
of a companion galaxy. In this case each fluid element travelling along the jet follows a
straight trajectory, but since the galaxy producing the jet is moving in a Keplerian orbit

about its companion, the jet appears to be curved. Sources for which this kind of physical
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Figure 1.4: The radio source 3C 449 shows mirror symmetry which is attributed to the
motion of the host galaxy in orbit about a companion (Begelman & Rees, 1996). As the
galaxy “rotates” about its close companion the jets bend sharply giving rise to mirror
symmetry.

mechanisms occur are called mirror symmetric. The prototype radio galaxy 3C 449 shown

in fig.(I.4) illustrates this type of symmetry.

The models developed for mirror symmetric radio sources are based in the idea that the
material of the jet moves ballistically. This is a first order approximation, but reproduces

quite well the shape of the radio sources (Blandford & Icke, 1978).

Radio sources with jets can possess another peculiar shape due to a combination
of kinetic and geometrical effects. This occurs if the jets precess about a defined axis.
The precession can result in the jet being curved as observed in the plane of the sky,
although any fluid particle of the jet always follows a straight trajectory. This behaviour
is manifested in the plane of the sky as inversion (or 180° rotation) symmetry. For
example, a bend to the right in one jet becomes a bent to the left in the opposite jet. A
typical example is the radio galaxy NGC 326 which is shown in fig.(I.5). It is very likely
that this precession originates at the very base of the jet (see Begelman et al., 1984, and

references therein), close to the central engine.

A radio source which presents inversion symmetry can be modelled as follows. In its
simplest form, the advancing jet moves under the influence of a dynamic pressure force F
per unit mass which is given by F=(w — v) /T where the velocity of the jet beam is v,
the velocity of the central source is w with respect to the intracluster medium and T is a

stopping time. In other words, the equation of motion of the beam is:

dv 1

E:?(v—w). (5.2)

Integration of eq.(5.2) gives:
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Figure 1.5: Inversion symmetry in the radio galaxies source associated with NGC 326.
The radio image of the galaxy shows a bend in the top left jet implies a bend to the
bottom right jet. This peculiar shape arise because the jets precess about a certain axis,
resulting in a cone-like radio structure. The projection on the plane of the sky of this
motion produces inversion symmetry.

v=w—(w—wvo)e VT (5.3)

where v is the initial velocity of the jet. Again, integration of eq.(5.3) gives the position

T of the beam as a function of time:

r=wt+T(vy—w) (1—e*t/T), (5.4)

in which r(t =0) =0 has been chosen as the base of the jet. The initial velocity vg is
usually assumed to be constant in magnitude, but it can precess on a cone with opening
angle 0 and period P (Icke, 1981):

sin 0 cos [27t (to — t) /P]
vo = Yo | sinOsin [27t (to —t) /P] |, (5.5)

cos 9

in spherical polar coordinates (r, 8, ¢ =27 (to — t) /P), with a precession period P. With
the aid of eqgs.(5.4)-(5.5) the inversion symmetry can be modelled to great accuracy for
radio galaxies with this particular shape (Icke, 1981).

Evidence exists for deflections of galactic and extragalactic jets when they interact
with high density clouds in the interstellar and extragalactic environment surrounding

them (see for example Burns, 1986; Bachiller et al., 1995; Best et al., 1998; Lehnert et al.,
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Figure 1.6: Quasar PKS 1318 + 113. The figure shows the narrowband Ly« image with
VLA 2cm radio map contours superimposed (Lehnert et al., 1999). The southern jet of
the quasar is deflected as it bores a hole through what seems to be two independent Ly«
clouds seen at the southwest of the centre of the source.

1999; McNamara et al., 1996).

The first suggestion that a deflection of a jet could be due to its interaction with a
cloud was made by Burns (1986), to explain the contradictions encountered when trying to
apply the arguments of radio trail sources to wide angle tail (WAT) sources. WAT radio
galaxies have a similar C—shaped structure, like radio trails but they appear distorted.
Indeed, in most sources the tails bend at the point where the jet disrupts, and some
others bend after this disruption (O’Donoghue et al., 1990). Burns (1986) came to the
conclusion that large bends in WAT’s approaching 1 Mpc in scale can not be achieved

unless unphysically high speeds through an extremely dense intracluster gas occurs.

More recently, Lehnert et al. (1999) have presented direct evidence for a jet—cloud
interaction in the quasar PKS 1318 + 113 (fig.(I.6)). The radio image of PKS 1318 shows
a strong deflection of the southern radio jet. The deflection begins to occur exactly at
the point at which two separated Lyo clouds seem to be surrounding the radio jet. As
explained by Lehnert et al. (1999), it seems that the jet has drilled a hole through the
cloud. This is the reason why they appear as two independent clouds around the jet at

the point where it begins to curve.

Pressure stratification can cause a jet to curve. This was first proposed by Icke (1991)

and extended by Canté & Raga (1996) and Raga & Cantd (1996). These authors carried
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out their analysis using non-relativistic jet velocities and assuming that the cloud was
a Gaussian sphere, an isothermal plane parallel atmosphere and an isothermal sphere
respectively in their publications. In Chapters III-IV a generalisation of their models is

analysed together with a description of the stability of the bending jets.

§6 Alignment effect in radio galaxies

HST observations of a sample of 28 3CR radio galaxies with redshifts z in the interval
0.6 < z < 1.3 were carried out by Best et al. (1996) and are described in detail by Best
(1996). The programme had the intention of imaging almost all 3CR radio galaxies in this
redshift interval. These 3CR radio galaxies were observed in wavebands corresponding
to rest—frame U and B. Additionally, all images were mapped at 1.8 GHz using the VLA,
with a resolution of 0.18 arcsec. These galaxies were also observed at 2.2 um with the
IRCAMS3 of the UKIRT at a resolution of 1arcsec. From these set of observations, Best
(1996) produced figs.(1.7)-(1.8). The figures show eight 3CR radio galaxies in the interval
1 < z < 1.3. The reason as to why this redshift interval was chosen is because within it,
all radio galaxies have more or less the same intrinsic radio luminosity. Before analysing
in more detail those images, it is important to note that, in general terms, a standard
L* elliptical galaxy at a redshift z ~ 1 is a diffuse low surface brightness object and only
objects of high surface brightness, or flat spectra will appear clearly on the images in the
optical waveband.

The radio images of these galaxies show the standard picture of a classical FR II source.
Two radio lobes extend in opposite directions from the central core. The infrared images
show the old stellar populations in these galaxies and they indicate that the host galaxy
appears to be an elliptical galaxy, as should be expected. However, the optical images
show little resemblance to what should be an elliptical host galaxy. Instead, the optical
structures observed in the images align to a high degree with the radio jet axis. This
effect, the so called radio/optical alignment effect in radio galaxies was first observed
by Chambers et al. (1987); McCarthy et al. (1987).

Synchrotron aging arguments have suggested that the greater the separation of the
radio source from the nucleus, the older the sources are. This is consistent with a picture
in which the sources are powered by a roughly constant energy supply throughout their
lifetime. Also, according to the unification scenarios mentioned in section §3, the radio
axes of radio galaxies are observed within 45° to the plane of the sky. This implies that
the difference between the observed and actual hotspot separations would not be very big
and also that the observed structures should lie more or less in the plane of the sky.

As it is seen from the optical images, the oldest radio galaxies do not show a very
strong optical structure aligned with the radio jet axis. However, the small, young radio
galaxies show a very pronounced effect. This means that the radio/optical alignment

effect is relatively short lived. In fact, Best (1996) calculated the ages of the radio galaxies
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Figure I.7: Five small radio galaxies in the redshift range 1 < z < 1.3 at the same
physical scale. The left images show HST images whilst the right ones are UKIRT K-
band images. The radio contours had been overlaid on both sets of images. The evolution
of the sources with linear size is apparent from the images. These set of images were kindly
provided by Philip Best and they are described by Best (1996).
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Figure 1.8: Three large radio galaxies in the redshift range 1 < z < 1.3 at the same
physical scale. For each galaxy, the upper panel shows the HST image, and the lower one
the UKIRT K-band image. Radio contours have been overlayed on both images. These
images were kindly provided by Philip Best and they are described by Best (1996).
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using synchrotron aging arguments and concluded that the activity is completed in about
10 Myr.

All these observations suggest that the aligned optical structures are a short lived
phenomena, which is induced by the passage of the radio jet as it expands through the
interstellar and intergalactic medium. It seems that, among all the different models that
have been proposed in the literature (see Best, 1996, and references therein for a complete
description of the different models), there is no single theory that can account for all of the
observed features of the alignment between the optical and radio emission (Longair et al.,
1995). The observation of polarised optical emission from some of these sources suggests
that scattering of light from an obscured quasar could be responsible for these optical
structures. A centrally obscured quasar would be responsible to the illumination of pre—
existing dust and gas clouds. However, it seems extremely natural that the primary cause
must be the interaction of the jet with cool interstellar clouds surrounding the parent
galaxy as well as in the intergalactic medium.

McCarthy, van Breugel & Spinrad, and Chambers, Miley & van Breugel proposed that
the alignment of the observed optical structures were produced because of enhanced star
formation induced in some way by the passage of the radio jet through the interstellar
medium of the host galaxy and the intergalactic medium. According to this jet—induced
star formation picture it would be possible to account for the change in structure with
increasing physical size of the radio galaxies. The lifetime of the newly formed stars
associated with HII regions would amount to ~107 yr. After this time the luminosities of
these star—forming regions decay. The polarisation of the light would then be attributed
to the scattering of the light by the dust or gas associated with the star—forming regions.

In an attempt to understand better this jet-induced star formation phenomenon, de
Young (1989) performed numerical simulations of high—energy radio jets passing through
dense protogalactic gas. He showed that cooling in the regions behind the shocks asso-
ciated with radio jets can lead to star formation rates over 100 My yr !, when the total
mass of gas surrounding the galaxies approaches 104 M.

Rees (1988) made a more physical proposal about this star—formation idea. He built a
model for which the interstellar and intergalactic medium which contained cold (~ 10*K)
clouds in pressure balance with a hot (~ 10°K ) medium. These cold clouds are most
probably the result of cooling flows (Fabian, 2000). The expansion of the shocks associated
with the radio jet expel the hot phase plasma, but leave the clouds within the lobes, where
they are squeezed by the higher pressure around them. This compression drives the stable
clouds into a gravitational unstable phase, triggering a burst of star formation. After the
shock has passed, the clouds find themselves overpressured by a factor of ~ M2, where M
is the Mach number of the flow. The value of M is assumed to be ~ 100 along the jet and
~ 10 for the transverse expansion of the cocoon. Since the Jeans Mass My ~ pil/oid/pgloud
(Kron et al., 1995), where p is the pressure and p is the density, the above considerations

imply that the resultant overpressure over the clouds would trigger collapse of all clouds
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down to a fraction of any value that lies in the interval 0.01-0.1 of the previous Jeans
Mass. This results in a very well synchronised burst of star formation enhanced by a
factor of the order of the Mach number.

Begelman & Cioffi (1989) used a similar model to that by Rees, but considered
the shock to be radiative. In this case, the cloud’s Jeans mass decreases by a factor
(Pambient/Peloud) /%. Clouds which initially have masses somewhat less than the Jeans
mass are driven gravitationally unstable by the compression.

Despite the fact that the idea of a jet—induced star formation model is very attractive
to account for all these results, observations do not seem to favour this (Best et al., 2000).
In fact, it was shown by Best et al. (2000), that for small radio sources (< 150kpc), the
morphology, kinematics and ionisation properties of the emission line gas of the radio
sources are dominated by the effects of the bow shock associated with the expansion of
the radio source through the interstellar and intergalactic medium. Gas clouds embedded
in the interstellar and intergalactic medium are accelerated by the shocks, giving rise to
the distorted velocity profiles and extreme velocity dispersions observed. On the other
hand, large radio sources have more settled kinematical properties. The shock fronts have
passed well beyond the emission line regions and the dominant source of ionising photons
appears to be the AGN. The diagram shown in fig.(I.9) by Best et al. (2000) shows the
evidence for these different means of explaining the optical aligned structures. In Chapter
V an analytic one dimensional model of the interaction of a shock wave with a high
density region (a cloud) is developed. This one dimensional analysis provides an insight
into the more physical mechanisms that might be acting on the interaction of the jet as
it expands and interacts with surrounding clouds in pressure balance with the interstellar

and intergalactic medium.

§7 Thesis outline

The work presented in this dissertation deals mainly with the interaction of extragalactic
jets from powerful double radio sources and their environment. In Chapter II the hy-
drodynamics needed for all the calculations used later are described. This is achieved
by converting the basic equations of relativistic hydrodynamics into useful forms for the
study of jet interactions, without considerations of magnetic fields. Chapter III deals with
the problem of bending of jets due to jet—cloud interactions. Chapter IV analyses the
stability of curved jets against the formation of internal shocks. Chapter V deals with
the problem of the collision between a shock wave and a high density region, or cloud.
Finally, in Chapter VI the astrophysical implications of all the calculations presented in

this dissertation are discussed.
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Figure 1.9: Emission line diagnostic plot for a particular sample of 3CR radio galax-
ies, compared with theoretical predictions (Best et al., 2000). Some of these galaxies
present the alignment effect shown in figs.(I.8)—(1.9). The upper shadowed regions are
simple photoionisation models. The continuous curve that increases towards the right of
the diagram is the model for photoionisation models including matter bounded clouds,
that is, photoionisation of a composite population containing both optically thin (matter
bounded) and optically thick (ionisation bounded) clouds. The lower shadowed region
is predicted by shock ionisation models. The upper unshadowed region above this last
one is the one for shock models including a precursor region, that is an upstream ionised
region produced by photons diffusing into this preshocked gas. The five galaxies plotted
at the right of the diagram have no data available for one of their emission lines.



Chapter 11

Hydrodynamics

§8 Energy—momentum tensor in relativistic hydrodynamics

In order to derive the relativistic equations of motion in hydrodynamics, let us first con-
struct the energy-momentum 4-tensor 7% for a fluid in motion on a flat spacetime
(Landau & Lifshitz, 1994a, 1995). Latin indices take the values 0, 1, 2, 3 and Greek
indices 1, 2, 3. The time t and the speed of light c are related to the time coordinate x°
by the relation x°=ct. The Galilean metric gk for a flat space time is given by goo =1,
g11 =022 =033 =—1 and gix =0 when i# k The different components of the symmetric
energy—momentum tensor 7% are such that the scalar 7% = 7qo is the energy density
and 7°%/c = —Tos/c is the o component of the momentum density vector. Tap = TxB
represents the 3-momentum flux density tensor and the component c¢7°% is the energy

flux density vector. The equations of motion are described by the condition:

AT
=0, (8.1)

Consider an element of area df* =df, of a three dimensional closed surface which is
at rest. Integration of eq.(8.1) over the volume enclosed by this surface gives the change

in momentum per unit time —the momentum flux—:

1o

- atJTO“dV: —jgfr“ﬁdfﬁ, (8.2)

according to Gauss’s theorem. The right hand side of eq.(8.2) is the amount of momentum
flowing out through the bounding surface in unit time. In other words, the force exerted
on an area element df* by the fluid is T“Bdfﬁ. Consider now some volume element which
is at rest in its local proper (or rest) frame. In this system of reference, Pascal’s law applies:
“the pressure ezerted by a given portion of the fluid is the same in all directions and
perpendicular to the surface on which it acts”. Mathematically this is expressed by

the relation 7*Pdfs = pdf*, where p is the pressure of the fluid. This relation means
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that 7Tag =pd«p and here diy is the unit 4-tensor for which d; =1 if i=k and 8y =0 if
i#k. On the other hand, in the local proper system of reference, the component 7°° =e,
where e is the proper internal energy density of the fluid. To calculate the remaining
components note that, since the fluid is at rest in its local proper frame, the momentum

component density T°* vanishes. Therefore, the energy-momentum tensor has the form

0 0
P 0
0 0
0 P

o o o o
o T o o

in the local proper frame. To find out an expression for 7 in any frame of reference we
use the fact that the fluid 4—velocity u' has the values u®=1 and u*=0 in the local rest
frame. With this and eq.(8.3) it follows that

T = wutu® — pg'*, (8.4)

where w = e+ p is the heat function per unit volume. Since eq.(8.4) has the same form
in any system of reference, it gives the required expression for the energy-momentum

4-tensor in relativistic luid mechanics.!

§9 Equations of motion in relativistic fluid dynamics

The conservation of mass in the absence of any sinks or sources is described by the re-

lativistic continuity equation (Landau & Lifshitz, 1995):

ank

* —nu¥ and the scalar n is the proper number density of

where the particle flux 4—vector n
particles in the fluid. The energy-momentum tensor in eq.(8.4) does not take into account
any dissipative processes and therefore the equations of motion expressed by eq.(8.1) refer

to an ideal fluid.

We now project eq.(8.1) on the direction of the 4—velocity, that is, we multiply eq.(8.1)

by u' and use the fact that u'u;=1 which implies

"When discussing relativistic fluid mechanics we take the values of the different thermodynamic quant-
ities in their local proper frame. For example the internal energy density e, the enthalpy per unit volume
w, the entropy density o, and the temperature T are all referred to this system of reference. The pressure
P, being a relativistic invariant, could be described in any frame of reference.
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9 swy 1 0p
k i I
n {axk (n) naxk} 0. (92)

By the first law of thermodynamics:

d(w/n) =Td(o/n) + (1/n)dp, (9.3)

in which T is the temperature and o the entropy per unit volume, together with the

continuity equation, eq.(9.1), it follows that eq.(9.2) can be rewritten as:

wor (7) =g (7) =0 (o4

where the derivative d/ds means differentiation along the world line s of the fluid element
concerned and the interval ds? = g dx'dx*. Eq.(9.4) means that the fluid is adiabatic.

Let us now project eq.(8.1) on a direction orthogonal to ul. To do so, note that the
tensor {6} — uiul} is perpendicular to ul. We can multiply eq.(8.1), that is ale/axk:o,
by this tensor and find

ot 9T
oxk T ooxk

=0,

which is indeed a perpendicular vector to u'. Expansion of this relation results in the

equation:

oy op op
k¥ YV kF
K o wu x (9.5)

which is the 4—-dimensional Euler equation. The three spatial components constitute the

relativistic Euler equation:

v O0p

0
%{l+v -gradv} :—gradp—c—za,

- (9.6)

where v is the flow velocity and the Lorentz factor v is given by y = 1/\/(1 —v2/c?). The
time component of eq.(9.5) is implied by the other three. In the case of isentropic flow,
that is, when o/n=const, and assuming the flow to be steady, the spatial components of

eq.(9.5) give

v (v - grad) (ywv/n) + c*grad (w/n) = 0.
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Scalar multiplication by v leads to (v - grad)(yw/n) = 0 which implies that along any

streamline the quantity

Yw/n = const. (9.7)

This is the relativistic version of Bernoulli’s equation.f

§10 Classical equations of hydrodynamics

In order to derive the classicall equations of hydrodynamics, let us first note the difference
between the values of the thermodynamic quantities in the relativistic case and those used
classically. To begin with, the quantities in the relativistic case are defined with respect
to the proper system of reference of the fluid. In classical mechanics these quantities are
referred to the laboratory frame. In the relativistic case the thermodynamic quantities,
such as the internal energy density e, the entropy density o and the enthalpy density w
are all defined with respect to the proper volume of the fluid. In classical fluid dynamics,
these quantities are defined in units of the mass of the fluid element they refer to. For
instance, the specific internal energy €, the specific entropy s and the specific enthalpy w
are all measured per unit mass in the laboratory frame. When taking the limit in which
the speed of light c tends to infinity we must also bear in mind that the internal energy
density e includes the rest energy density nmc?, where m is the rest mass of the particular
fluid element under consideration. Therefore the following classical limits should be taken

in passing from relativistic to classical fluid dynamics:

mn —— py/1—v?/c?~p (1 — v2/2c2> ,

1
e — nmc” + pe ~ pc2 — —pv2 + pe,

c—00 2
£—>mc2+m(e—|—1—))zm(cz+w), (10.1)
n c—e p

where p is the mass density of the fluid in the laboratory frame. Using these limiting
values, the equation of continuity eq.(9.1), Euler’s equation eq.(9.6) and the conservation

of entropy eq.(9.4) have their classical analogues respectively:

'Bernoulli’s equation is also obtained directly from the time component of eq.(9.5) when the flow is
steady and isentropic. The result is y(v/c) - grad (wy/n) =0, which is equivalent to eq.(9.7).
{Here and in what follows we use the word “classical” to mean non-relativistic.
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0p
3t P+ div (pv) =0, (10.2)
ov 1
3t + (v -grad)v ——Egradp, (10.3)
0
ai (v-grad)s =0 (10.4)

In the same approximation, eq.(9.7) gives the classical version of Bernoulli’s equation,
that is,

1
EUZ +w = const, (10.5)

for a given streamline. The constant in the right hand side of eq.(10.5) differs from the
constant in the right hand side of eq.(9.7) by an unimportant additional term.

When gravitational effects are taken into consideration, Euler’s equation, and hence
Bernoulli’s law, have to be changed appropriately in order to account for the force exerted

by the gravity on the flow of a given fluid element:

S+ (v grad)v = —gradp—grad o, (106)
1
zvz +w + ¢ = const, (10.7)

where the gravitational potential ¢ is related to the gravitational acceleration g by the

relation g=—grad ¢.

§11 Characteristics

Let us consider now the one dimensional problem of a relativistic flow in which dissipation
processes are not taken into account, that is, the entropy remains constant as the fluid
moves. For this particular case, the continuity equation, eq.(9.1) and the x-component of

the equations of motion, eq.(8.1) are given by:

0 0
= (Yn)+ = (ynv) =0, (11.1)
and
109 P 0 [wuy? _

respectively. If we define the quantities:
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then eq.(11.1) and eq.(11.2) can be written as:

2
U 10 wvog « [vov 0v
[y I S, N E ks o QT ik Tl G
( cz){cat+cax}+c{czat+ax} 0
v? vop 0@ 1 0v v ov
1— =y F\ 7 T
“( cl){clat+ax}+c2at+c2ax 0

Addition and substraction of these two relations gives:

where:

Dyt =1 ioc%) %;i (ot %) %

(11.3)

(11.4)

(11.5)

(11.6)

(11.7)

(11.8)

for any function f(t,x). From the definitions of the operator Dy in eq.(11.8), it follows

that:

Dy (v/c)
1—v2/c?

1—}—'U/c}1/2

:Diln{1—v/c

and hence, egs.(11.7) become:

1+uv/c
(1 —vz/cz) Dy {ln (1 _U/C) i@} —0.

If we now introduce the parameters:

1+ u/c}W

jiE(Piln{1_v/c

(11.9)

(11.10)

which are called Riemann invariants, then egs.(11.9), that is, egs.(11.1)-(11.2), become

equivalent to (Taub, 1948, 1978):
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(12a2) tar (a2 d) 2|0 (11.11)

From this relation it follows that the Riemann invariants 7. are constant along the curves
dx/dt==c(a =+ v/c)/(1 & av/c) respectively. These curves C1 are called characteristics
and play an essential role in fluid dynamics. The differential operators that appear inside
the brackets in eq.(11.11) are the operators of differentiation along the characteristics C4
in the x—t plane.

In general terms, a disturbance is said to propagate as a travelling wave (Landau &
Lifshitz, 1995; Taub, 1948) if either 7, or J_ is constant. For instance, consider the case
in which J_=const, then from eq.(11.10), and eq.(11.11) it follows that (Taub, 1948):

10¢ oQ
190 Ly 2® _ 11.12
cor @I =0 (11.12)
with
. x+v/c
v = . 11.13
2 1+ av/c ( )
The general solution of eq.(11.12) is
fle) =x—Y¥(@)ct (11.14)

in which f(¢) is an arbitrary function. The relation eq.(11.14) means that ¢ is constant
along straight lines with slope W(¢) in the plane x—ct. In other words, W(¢) is the
velocity of propagation of ¢. From the definition of W in eq.(11.13) it follows that, for
weak disturbances in which v—0, then W(¢)— «.

The speed of sound is the velocity at which adiabatic perturbations of small amplitude
in a compressible fluid move with respect to the flow. Due to the fact that W(¢) —
o as v — 0, it is obvious that o represents the speed of sound in units of the speed of
lightt.

The properties of subsonic and supersonic flow, that is flow with velocity less or
greater than that of sound, are completely different in nature. To begin with, let us
see how perturbations with small amplitudes are propagated along the flow for both,
subsonic and supersonic flows. For simplicity in the following discussion we will consider
two dimensional flow only. The relations obtained below are easily generalised for the

general case of three dimensions.

"When speaking of perturbations that travel at the speed of sound with respect to the flow, we have
in mind perturbations that do not involve entropy and vorticity perturbations which are transmitted with
the flow itself (Landau & Lifshitz, 1995).
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(a) (b)

Figure IL.1: Region of influence of small amplitude perturbations. A perturbation of
small amplitude is produced in the flow at some point 0. This is carried by the flow which
has a velocity v». In the case of subsonic flow, as shown in panel (a), the perturbation is
able to propagate to the whole space. When the flow is supersonic the perturbation is
propagated only downstream inside a cone with aperture angle 2. The speed of sound
a and the angle 0 are measured in a frame of reference in which the flow is at rest —the
proper frame of the flow. The vector u is the relativistic addition of vectors v and a@;,
where €/ is a unit radial vector in the proper frame of the flow.

If a gas in a steady motion receives a small perturbation, this propagates through the
gas with the velocity of sound relative to the flow itself. In another system of reference, the
laboratory frame, in which the velocity of the flow is v along the x axis, the perturbation

travels with an observed velocity u whose x and y components are given by:

acosO+ v
= 11.156
YT T v cos0/c?’ ( )
7‘] . e
Uy = w (11.16)

14 avcos0/c?’

according to the rule for the addition of velocities in special relativity (Landau & Lifshitz,
1994a). The polar angle 0 and the velocity of sound a are both measured in the proper
frame of the fluid. Since a small disturbance in the flow moves with the velocity of sound
in all directions, the parameter 0 can have values 0 <0 <27. This is illustrated pictorially
in fig.(II.1).

Let us consider first the case in which the flow is subsonic, as is presented in case (a)
of fig.(I.1). Since by definition v < a and ¢? > awv, it follows from eqs.(11.15)-(11.16)
that ux(0 = m) < 0 while uy(0 =71) =0. In other words, the region influenced by the
perturbation contains the velocity vector v. This means that the perturbation originating

at 0 is able to be transmitted to all the flow.

When the velocity of the flow is supersonic, the situation is quite different, as shown

in case (b) of fig.(II.1). For this case it follows that uy(6 =) >0 and u, (0 =n) = 0.
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In other words, the velocity vector v is not fully contained inside the region of influence
produced by the perturbation. This implies that only a bounded region of space will be
influenced by the perturbation originated at position 0. For the case of steady flow, this
region is evidently a cone. Thus, a disturbance arising at any point in supersonic flow is
propagated only downstream inside a cone of aperture angle 2. By definition, the angle
o is such that it is the angle subtended by the unit radius vector @, with the velocity
vector v at the point in which the azimuthal unit vector @, is orthogonal with the tangent
vector d(ae])/d0 to the boundary of the region influenced by the perturbation. The unit
vector @/ is the unit radial vector in the proper frame of the flow. In other words, the

angle o obeys the following mathematical relation:

8y =0. (11.17)

Substitution of egs.(11.15)-(11.16) into eq.(11.17) gives:

1 av
t = — . 11.18
ame y{tanﬁ—l—czsin@} ( )

On the other hand, since tan =, /uy, it follows from eqgs.(11.15)-(11.16) and eq.(11.18)
that:

ta.'r19:—E 1—-=
a

so eq.(11.18) gives a relation between the angle «, the velocity of the flow v and its sound

speed a:

1 (1/'U

1—(a/v)?

tanoe =y~ (11.19)

This variation of the angle « is plotted in fig.(II.2) for the case in which the gas is
assumed to have a relativistic equation of state, that is, when p =e/3. The important
feature to note from the plot is that the aperture angle of the cone of influence is reduced
when the velocity of the flow approaches that of light.

From eq.(11.19) it follows that, as the velocity of the flow approaches that of light, the
angle « vanishes. In other words, as the velocity reaches its maximum possible value, the
perturbation is communicated in a very narrow region along the velocity of the flow.

In studies of supersonic motion of fluid mechanics it is very useful to introduce a

dimensionless quantity M defined as:
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Figure II.2: Region of influence of a perturbation for different values of the velocity
of a relativistic gas with a sound speed a =c/v/3. From left to right the closed loops
correspond to values of the velocity v of 0.0, 0.2, 0.4,...,0.8 in units of the speed of
light ¢. The perturbation is assumed to originate at the origin of the proper system of
reference of the flow. In the case of supersonic flow, the region of influence occurs only
downstream inside a cone with aperture angle 2c. This cone surrounds the corresponding
loop and is tangent to it. When the flow is subsonic, the perturbation is transmitted to
all the flow. As a particular example, the cone and the velocity vector have been drawn
for the case in which the velocity is v=0.8c.

~ =sina=122 (11.20)

according to eq.(11.19). The quantity v, = 1/m is the Lorentz factor for the
velocity of sound a. The number M has the property that M — 1 as v - aand M —
oo as v —c. It also follows that M >1 if and only if v >a.

The surface bounding the region reached by a disturbance starting from the origin 0 is
called a characteristic surface (Landau & Lifshitz, 1995). This definition of characteristic
and that given above, when the Riemann invariants were introduced, are the same in the
sense that the characteristics introduced here are curves in the x—y plane which cut the
streamlines in this plane at the Mach angle. Those discussed above correspond to curves
in the x—t plane which cut the streamlines (that is, the curves x(t) for which dx/dt=v)
at the Mach angle in this plane.

In the general case of arbitrary steady flow, the characteristic surface is no longer a
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cone. However, exactly as it was shown above, the characteristic surface cuts the stream-
lines at any point at the angle «.

One of the main differences between supersonic and subsonic flow is the possibility
of a certain type of discontinuities in the flow, called shock waves. For example, from
eq.(11.14) it follows that for certain functions f(¢), which are determined by the particular
boundary conditions of the problem in question, the curves ¢ = const in the x—t plane
intersect. Since the Riemann invariants as defined in eq.(11.10) are constant along these
curves, with a different constant for each curve, it follows that for travelling waves the
velocity v and the other hydrodynamical variables are multivalued. This is impossible
in any physical circumstance and results in the creation of strong discontinuities (shock
waves) on the flow.

Let us briefly discuss the classical limit of the different physical circumstances men-
tioned above. To do this, we make use of the relations presented in eq.(10.1) with c— o0
and, as it is usual in the classical case, we represent the speed of sound by c.

First of all, the speed of sound c is:

op 1/2
= — . 11.21
¢ (ap) ( )

S

The Riemann invariants 7, are constant along the curves dx/dt=+4(c + v). The dimen-

sionless number M satisfies the following relation:

L. (11.22)
— =S8SIn& — .
M

c—oo C

and is called in classical hydrodynamics the Mach number.!
The results obtained about the relativistic and classical Mach number M can be re-

written in the following way:

Theorem 1

The dimensionless Mach number M increases without limits as the velocity of the flow
takes its maximum possible value. This maximum value is the speed of light in the
relativistic case and infinity in the classical case. The Mach number tends to zero as the
velocity of the flow vanishes, and tends to unity as the velocity of the flow tends to the
velocity of sound. This Mach number is greater than one for supersonic flow and less than

unity when the velocity of the flow is subsonic.

As a way to compare the difference between the classical and relativistic Mach numbers,

'The relativistic generalisation of the Mach number as presented in eq.(11.20) was first calculated by
Chiu (1973). This was done by reducing the problem of steady relativistic gas dynamics to an equivalent
Newtonian flow and by observing that the Mach number is a pseudoscalar. From eq.(11.20) it follows that
this number, the Chiu number is in fact a definition of the proper Mach number since it is defined as the
ratio of the three-relativistic velocity of the flow yv to the three-velocity of sound yq.a (Kénigl, 1980).
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Figure I1.3: Comparison between classical and relativistic Mach numbers. The green
broken line is the classical Mach number and the blue continuous curve is its relativistic
analogue. The intersection of both curves occurs when the Mach number in both cases is
unity, that is when the velocity of the flow v is equal to the local velocity of sound. For
the plot an ultrarelativistic equation of state was assumed for the gas, that is the velocity

of sound a:c/\/g.

a plot of both of them is presented in fig.(II.3). The intersection of both curves occurs for
the case in which the Mach number tends to unity, that is when the velocity of the flows
tend to the local velocity of sound according to Theorem 1. For the case of subsonic flow,
the relativistic Mach number is less than its classical counterpart. However for supersonic

flow the relativistic Mach number is greater than the classical one.

§12 Polytropic gases

In subsequent discussions we will consider gases with a particular behaviour in the way
they change their thermodynamical quantities under quasi-statical processes. This gas, the
so called polytropic gas was first introduced in thermodynamics by G. Zeuner (Chandrasekhar,
1958) and it is used extensively in Astrophysics.

A polytropic change on the thermodynamical quantities of a gas is said to occur if the
change is done quasi-statical and is such that its specific heat remains constant during the
entire process. From this definition it follows that (Chandrasekhar, 1958):

P x n, (12.1)

where the polytropic indez k is a constant and has a very well known value of 5/3 for
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an adiabatic mono atomic gas (Landau & Lifshitz, 1994b) in which relativistic effects are
not taken into account. In the case of an ultrarelativistic photon gas it has a value of 4/3.

The first law of thermodynamics, eq.(9.3), can be rewritten as (Stanyuokovich, 1960):

_ =dlnn. (12.2)

The speed of sound a and the enthalpy per unit mass, specific enthalpy, w of a polytropic
gas can then be written accordingly (Stanyuokovich, 1960):

2_ 2 Kp

< 12.3

O = T p/e) (123)
2 2

C 1 a

— =1 —. 12.4
w k—1¢c2 ( )

In the case of an ultrarelativistic gas, that is, when p ~e —for example, a photon gas
in which p=e/3, it follows that (Stanyuokovich, 1960):

p=(k—1e (12.5)
a=vk—1lc (12.6)

For the case in which relativistic effects in the macroscopic motion of the gas are not
considered, egs.(12.3)-(12.4) become

= K%, (12.7)

(12.8)

according to eq.(10.1).

§13 Shock waves in hydrodynamics

One of the most important physical phenomena that occur in supersonic flow is the exist-
ence of discontinuities in the different hydrodynamical quantities describing the flow. In
order for the flow to possess such discontinuities, certain conditions have to be satisfied
at the boundaries between the media. Mathematically, these boundaries are treated as
infinitesimal, so that they may be assumed to be surfaces. For a steady flow, an element
of area on a surface of discontinuity can be considered to be a plane and it can be assumed
to be at rest by an appropriate choice of the system of reference. If the flow is not steady,

then the argument remains valid for a short interval of time. In order to simplify the
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calculations, and without loss of generality, the surface of discontinuity can be chosen to
be a plane which is parallel to the Oyz plane, so that the unit vector @, in the positive x
direction is normal to it.

Let us consider a closed three dimensional timelike cylinder S that intersects the surface
of discontinuity. The axis of the cylinder is such that it is parallel to the normal to the
plane of the surface of discontinuity, in the direction of the x axis. Integrating eq.(8.1)
and eq.(9.1) along the volume enclosed by this hypersurface and using Gauss’s theorem

we obtain:

j@f"‘df(x =0, (13.1)
fﬁnu“dﬂx =0. (13.2)

with df, the area element along the surface S. Taking the limit when the volume enclosed

by the area S tends to zero gives:

[T =0, [nu']=0. (13.3)

where the difference between the values on either side of the discontinuity (sides 1 and
2) are represented by q1 — q2 = [q] for any quantity q. As we saw in section §8, c7°%
represents the energy flux vector, diag(7«p) is the 3-momentum flux density vector and
nu® is the particle flux 4-vector. From this it follows that the particle flux, the energy
flux and the momentum flux vectors are conserved across the surface of discontinuity

according to eq.(13.3):

mu =0, [T =MW +p]=0,  c[T% = clwu’u] =0, (13.4)
and
[TY%] = [wuwu?] =0, [T%] = [wu*u?*] = 0. (13.5)

where x, y, and z are Cartesian coordinates. From egs.(13.4)-(13.5) it follows that it is
possible to define two types of discontinuities. In the first place, those in which there is
no particle flux through the surface of discontinuity. That is, nju} = npu¥ = 0. Since the
particle number densities on both sides of the discontinuity are non-zero it follows that
the velocities uf = u¥ = 0. This satisfies identically all relations in eq.(13.5) as well as
the first and third of eq.(13.4). The second relation in eq.(13.4) implies [p] = 0. That is,
a discontinuity for which the mass flux through its surface is zero is such that its normal

velocity components are zero and the pressure is continuous across it:
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Uy, = vy, =0, [p] =0. (13.6)

The values of the other hydrodynamical quantities can take any value across this surface
of discontinuity. A discontinuity of this kind is called a tangential discontinuity.t

The second type of discontinuity occur when the particle flux through the surface is
non-zero. According to egs.(13.4)-(13.5), this implies that the tangential component of

the velocity is preserved across the surface of discontinuity:

[w] =0,  [n]=0. (13.7)

Such discontinuities are called shock waves. Substitution of the 4-velocity components

in eq.(13.4) gives:

vy1/Vi =wy2/V2 =], (13.8)
wivyi/c? +p1 = waviys/c* +pa, (13.9)
wivyT = wavay3, (13.10)

in which V=1/n1is the proper volume per particle number. From eq.(13.8) and eq.(13.10)

it follows that the particle number flux j is given by:

i? = (p2—p1)c?/(w1VF — w,aV3). (13.11)

Algebraic manipulation of egs.(13.8)-(13.10) imply that (Taub, 1948; Landau & Lifshitz,
1995):

w%V1 —wyVy+ (‘pz—pﬂ(unV%—}—sz%) =0, (13.12)

which is called the relativistic shock adiabatic relation or Taub adiabatic. For a given
p1, Vi, the shock adiabatic gives a relation between py, V.
Writing v/c=tanh @, so that y=cosh @, the velocities of the gas on either side of the

discontinuity can be easily shown to be:

'In classical hydrodynamics tangential discontinuities are shown to be unstable and spread out to form
a turbulent region. However, this stability arguments do not apply for the particular case in which the
velocity of the flow is continuous across the surface of discontinuity. A tangential discontinuity with this
properties is called a contact discontinuaty.
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v _ [(p2—p1)(e2+P1) v2 _ [(p2—pi)(e1 +Pp2) (13.13)
c (e2—er)(er +p2)’ c (e2—er)(ez+p1)’ '
while their relative velocity is
vl — v (p2 —p1)lez—e)
UYp=-——"">=¢C 13.14
R e \/(e1 e pi) (e14)

according to the relativistic rule for addition of velocities. The entropy density, as any
other thermodynamic quantity, is discontinuous across a shock wave. From the law of the
increase of the entropy it follows that the entropy can only increase across a shock wave.
It is possible to show under very general arguments (Thorne, 1973; Landau & Lifshitz,

1995) that the shock wave is a compression wave, that is pp >pj, if

(az(wvz)/ap2> >0 (13.15)

When p; >7p; it follows from egs.(13.8)-(13.10) that V; > V,. Using the definition of the
particle number flux in eq.(13.8), this implies that v; > . In other words, provided that
the inequality in eq.(13.15) is satisfied, then a shock wave satisfies:

P2 > P1,s Vi>V, and v > . (13.16)

Very general arguments about the stability of shock waves (Landau & Lifshitz, 1995) show

that, for any shock wave, whatever the thermodynamic conditions of the gas:

vy >a7 and w < ap, (13.17)

for a gas with sound speed a.

In order to derive the classical expressions of the relations written above, we take the
limit ¢ — oo and use eq.(10.1). It is common practice in classical hydrodynamics to use
the mass flux density j as opposed to the particle number density j, and the inverse of the
mass density, the volume per unit mass V, instead of the volume per unit particle V.

The mass density flux j is then given by:

i = (p2—P1)/(Vi = V2) =0. (13.18)

The shock adiabatic relation, also called Hugoniot adiabatic in classical fluid dynamics,
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is:

1. )
wi — w2+ 5 Vi+ V2)(p2—p1) =0. (13.19)

The velocity difference in eq.(13.14) gives:

v — v =+/(p2—p1)(V1 — V2. (13.20)

All the inequalities in egs.(13.16)-(13.17) remain valid and that in eq.(13.15) becomes
(02V /op?)s >0.

§14 One-dimensional similarity flow

In this section we will discuss the one—dimensional non-steady gas flow under the assump-
tion that there are characteristic velocities in the flow, but not characteristic lengths. To

simplify the discussion we assume that relativistic effects are not taken into account.

The state of the flow at any time is defined by the characteristic velocity parameter
and by some other parameters which describe the state of the gas, for example the pressure
and density at an initial instant. With these parameters alone it is not possible to find a
combination which has the dimensions of length or time. By applying the TT-Theorem
of dimensional analysis (Sedov, 1993) it follows that the distribution of the different hy-
drodynamical quantities can only depend on the position x and time t through the ratio
x/t=¢& only. In other words, if the lengths are measured in a unit that increases propor-
tional with time, the pattern produced by the flow remains unchanged. Such a flow is
called a stmilarity flow (Landau & Lifshitz, 1995).

Using the fact that all quantities in the problem depend only on the single variable
¢, for which 9/0x = (1/t)d/d¢ and 9/0t = —(&/t)d/dé, we obtain from the equation of
conservation of the entropy, eq.(10.4), (vx — &)s’ = 0. The prime denotes differentiation
with respect to . From this equation it follows that s’ =0, otherwise as it is obvious from
the equations presented below in eq.(14.1) a contradiction will be obtained. This implies
that the entropy s=const and so, similarity flow in one dimension which is adiabatic must
also be isentropic. In exactly the same way, the x and y components of Euler’s equation
imply that the velocity in the x and y components are constant and we can take them as

zero by an appropriate choice of the system of reference.

The x component of Euler’s equation, eq.(10.3), and the continuity equation eq.(10.2)

can be written as:
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(v—&)p' +pv' =0, (14.1)
(v—E&)v' =—p'/p=—c*0'/p. (14.2)

Here v denotes the velocity in the x direction and we will use that convention in what
follows. The trivial solution of this last set of equations is that of a uniform flow with
p=const, v =const. The non-trivial solution is found by eliminating p’ and v’ from the
equations, giving (v — &)? = ¢?, so that & = v + c. We take the plus sign in the following
discussion, which means that we have taken the direction of the positive x axis in a definite

manner:

x/t=v+c (14.3)

Substituting eq.(14.3) into eq.(14.1) we obtain pdv = cdp. In order to integrate this
relation we recall that the velocity of sound is a function of the thermodynamical state of
the gas. We can thus take this velocity as a function of the entropy and the mass density.
Since the entropy is constant it follows that the velocity of sound can be considered as a
function of the density only. In other words (Landau & Lifshitz, 1995):

v = JC(p)dp/p = Jdp/ct'p)p, (14.4)

which can be rewritten as:
v = J \/—dpdV, (14.5)

where the choice of the independent variable remains open.

Let us briefly discuss some general properties of the solution. Differentiating eq.(14.3)

with respect to x gives:

dpd(v+c)
t————=1. 14.6
ox dp ( )

The derivative of v 4 ¢ can be calculated from eq.(14.4) which gives:

dp p dp p
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and

pc = py/(0p/dp) =1/4/—0V /0p.

Differentiation of this relation results in:
d(pe)/dp = c?d(pc)/dp = p*c> (32 V /3p?), /2,
so that eq.(14.6) takes the form:
d(pc)/dp = c2d(pc)/dp = p?c®(d% V /ap?)s/2 > 0. (14.7)

Substitution of eq.(14.7) into eq.(14.6) implies that 9p/0x > Ofort > 0. Because
0p/dx = c20p/dx, it follows that dp/dx > 0. Also, since dv/dx = (c/p)dp/dx according
to eq.(14.4), the inequality dv/0x > O holds. In other words, we have proved that the

following relations are valid in a flow for which eq.(14.3) holds:

0p/0x > 0, op/ox > 0, ou/ox > 0. (14.8)

In order to understand the meaning of these inequalities, let us rewrite them not as
variations of the position x but as variations of the of time for a given fluid element as
it moves. This variation is given by the total derivative of the corresponding quantity
with respect to time. Thus, for the density it follows from the equation of continuity and
eq.(14.8) that: dp/dt = 0p/0t + vdp/0x = —pdv/0x < 0. This implies that dp/dt =
c?dp/dt < 0 also. On the other hand, Euler’s equation implies that dv/dt < 0. It
is important to note that this last inequality does not mean that the magnitude of the
velocity decreases as the fluid moves about, since v can be negative. We have proved that,

as the fluid moves, the following inequalities are satisfied:

dp/dt <0, dp/dt<0, dw/dt<O. (14.9)

This means that, as the fluid moves, its pressure and density decreases. To put it differ-
ently, the gas is continuously rarefied as the fluid moves. Such a flow is called a rarefaction

wave.

A rarefaction wave can only be propagated a finite distance along the x axis. This
follows from the fact that v — +o00 as x — +oo. As a result, we can apply eq.(14.3) at
the boundaries of a rarefaction wave. For this case, the ratio x/t is the velocity of the
boundary relative to a fixed system of coordinates. The velocity relative to the flow itself

is x/t—v which is equal to the local velocity of sound c according to eq.(14.3). This result
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Figure I1.4: Rarefaction wave (region II) bounded by two tangential discontinuities
(dashed lines). The gas to the right of the rarefaction wave in region I has been chosen
to be at rest. The arrows in the figure represent direction of motion of the flow and of
the weak discontinuities.

implies that the boundaries of a rarefaction wave are weak discontinusities.t

The choice of sign in eq.(14.3) is now clear. It must be such that the weak discontinu-
ities, bounding the rarefaction wave, are assumed to be moving in the positive x direction
relative to the gas. By an appropriate choice of the system of reference we can choose
the region, region I, to the right of the rarefaction wave to be at rest, as it is shown in
fig.(I1.4). Region II is the rarefaction wave and region III has gas moving with constant
velocity. The arrows in the figure represent the direction of the flow and of the weak
discontinuities. Due to the fact that the weak discontinuities move to the right relative to
the gas, the weak discontinuity at the right of the diagram moves to the right. However,
the weak discontinuity on the left might move in either direction. The direction depends
on the value of the velocity reached in the rarefaction wave (Landau & Lifshitz, 1995).

For a polytropic gas eq.(14.4) gives:

2
’U:—JdC:Y_1(C—Co), (14.10)

in which the constant of integration cy corresponds to the value of the velocity of sound
when the velocity of the rarefaction wave vanishes. Here and in what follows we denote
by the suffix 0 the region of the flow where the gas is at rest. Using the Poisson adiabatic
for a polytropic gas, and rewriting eq.(14.10), we find that:

"Weak discontinuities are surfaces of discontinuities for which the hydrodynamical quantities, which
are continuous across this surface, are not regular functions of the coordinates. This irregularity might
be of various forms, for example the first spatial derivatives (or any other higher derivative) might be
discontinuous across the surface or have an infinite value on it. These discontinuities are called weak
as opposed to the strong ones (such as shock waves and tangential discontinuities) in which the hydro-
dynamical quantities themselves are discontinuous. Since the values of each hydrodynamical quantity are
continuous across the surface of discontinuity, they can be “smoothed” by modifying them only near this
surface and by very small amounts, in such a way that the smoothed functions lack of singularity. The
true distribution of the pressure, say, can be represented as a superposition of a completely smoothed
function po and a very small perturbation p’ near the weak discontinuity which contains the singularity.
This perturbation, like any other perturbation in the flow, moves with the velocity of sound with respect
to the gas.
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1
c:co—z(y—ﬂ\v\, (14.11)
1 2/(y-1)
0200{1—§(v—1)v/60} : (14.12)
1 2y/(y-1)
P =Do{1 - E(Y—U?’/Co} (14.13)

The value of the velocity as a function of the ratio x/t is obtained by substituting

eq.(14.11) in eq.(14.3):

|

= (co—x/t). (14.14)

Lastly we mention that from eq.(14.11), since the velocity of sound is non negative,

the following inequality has to be satisfied:

v < 2e0/(y—1). (14.15)

When the velocity reaches this limiting value, the pressure, density and velocity of sound

in the gas become zero.






Chapter III

Jet—cloud interactions: bent jets

In section §5 various different mechanisms were described which can result in a consider-
able curvature of a radio jet in the plane of the sky as a result of kinetic effects of the host
galaxy —mirror symmetric sources— or by the precession of the jets along a cone —inversion
symmetric sources. Real hydrodynamic deflections can be caused either by the force pro-
duced by a wind of gas in a cluster of galaxies —radio trails sources— and also when the jet
interacts with a stratified density region (such as a galaxy or a cloud). In this chapter, the
physical mechanisms which produce the deflection of a jet which expands adiabatically
are analysed. First of all, the case is discussed in which the velocities of the gas in the
jet are non-relativistic and the jet interacts with an isothermal gas sphere and a cloud
of gas which is in equilibrium with a dark matter halo. In both cases, the self gravity of
the cloud is taken into account. The same calculations are repeated for the case in which
the velocities of the gas inside the jet are relativistic. In this case, for simplicity, the self

gravity of the corresponding stratified density region is not taken into consideration.

§15 Background to jet—cloud interactions

Jet—cloud interactions were first invoked to account for the sharp deflections observed in
wide-angle tail (WAT) sources (Burns, 1986). Numerical simulations by de Young (1991)
using the beam scheme (Sanders & Prendergast, 1974; de Young, 1986) showed that the
jet can be considerably decelerated in a collision with the cloud. The cloud appears to
be destroyed within a few million years and the jet adjusts itself in order to return to its
original direction. The conclusion was that the interaction was not sufficiently long lived
to produce a tail. Norman (1993) made a similar analysis using a RIEMANN code. He
showed that a De Laval nozzle (see section §4) was formed which efficiently re-accelerated
the jet in a different direction with respect to its original trajectory.

These contradictory results were reconciled by the 3D simulations performed by Hig-
gins et al. (1999) using the Godunov method of Falle (1991). This reconciliation came
about because in their models it was possible to vary two fundamental parameters: the

Mach number of the jet and the density contrast n, defined as the ratio of the jet density to
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that of the environment. Higgins et al. were able to reproduce the structures shown by de
Young using a fast, heavy jet model in their simulations (de Young used a Mach number
M a2 25 and a density contrast n=1). On the other hand, for the case of light jets with
low velocities, Higgins et al. reproduced the overall structure of the deflections shown by
Norman (the simulations performed by Norman were for a jet with Mach number M =4

and a density contrast n=0.2).

§16 Initial stages of the interaction

The collision of a 2D Herbig-Haro jet with a cloud, in which the characteristic size of the
cloud is much greater than the jet radius, has been studied in its initial stages by Raga
& Canté (1995). Their calculations were performed analytically and with a 2D numerical
code. The analytical description of the problem was formulated as follows. Imagine a well
collimated high Mach number flow (a jet) incident on a cold region of high density which
is in pressure equilibrium with its surroundings (a cloud). Under the assumption that the
jet radius is much smaller than the physical size of the cloud, the former can be thought
as a plane parallel high density region. This assumption is essential for two reasons. First,
the interaction of the jet with the cloud will result in a non significant disruption of the
cloud, and second it allows a simple analytical formulation of the problem.

As shown in fig.(III.1), consider a jet which is incident onto a cloud at an angle 0
to the plane of its surface. The interaction produces two shocks S; and S; which move
with velocities vi and v respectively.! The shock S; deflects the material in the jet to a
direction parallel to the boundary of the cloud.

Under the assumption that shocks S; and S; are strong, and because the pressure in

the region between shocks S1 and S; has to be the same, then (Raga & Cantd, 1995):

VZZU&VM (16.1)
Pc

where the uniform density of the cloud p. is greater than that of the density of the jet
p;j. Since vy < v;j and pj < pc it follows from eq.(16.1) that v, < vj. In other words,
for a very dense cloud, the shock S; moves into the cloud at very low velocities, causing
the deformation of its boundary to occur very slowly. In the limit of very high cloud
densities, it is safe to assume that the surface of the dense cloud effectively behaves as a
rigid obstacle and its shape does not change as a result of the interaction (Raga & Canté,
1995). This means that the jet is essentially interacting with a flat, rigid surface. The
standard Rankine-Hugoniot conditions for a strong shock imply that the velocity of the

jet after and before the collision are related to each other by:

tShock S is formed as a result of the interaction and is able to deflect the material of the jet at an
angle o to the cloud. The high pressure behind this shock drives a secondary shock S; into the cloud.
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Figure II1.1: Material within a jet travelling at velocity v; collides with a dense obstacle,
or cloud, which is in pressure equilibrium with its environment. The jet makes an angle
0 with the tangent to the cloud before impact. The interaction produces two shocks
Sy and Sy, which move with velocities vy and v, respectively. The motion of S; through
the cloud starts to drill a passage through it. The interaction produces a deflection of
the jet making it curve at an angle 3 with respect to the cloud boundary. The velocity
of the flow inside the reflected jet is v,.

Vy &% Vjcos 0, (16.2)

as can be seen from the geometry of fig.(III.1). Eq.(16.2) means that the Mach number in
the jet has decreased, and in fact, it is clear from that relation that a fraction 1 —sin® 9
of the initial kinetic energy of the jet is lost in the collision. The region behind the shock
St is highly overpressured and this means that the material moving away from the region
where the collision occurred expands inside a Mach cone of angle 3, which is given by
(Canté et al., 1988):

. 2
= 16.3
sinB (k —1)Mjcos8’ (16.3)
where
M; = Vj/C, (16.4)

is the Mach number, ¢ the speed of sound and k the polytropic index of the flow inside
the incident jet. In other words, the reflected beam looses collimation as a result of the
interaction. This reduction on the collimation of the jet can be severe and could lead to

a complete disruption of the jet beam. Indeed, from the conditions at the boundary of
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shock Sy it follows that the angles 3 and 0 are related to one another by the following
relation (Canté et al., 1988):

(1 —a)—\/{m —5,)2—4E,tan29}

t = 16.5
ano 2tan® ( )
and the inverse of the compression factor ¢ is:
K—1
= — 16.6
& K+ 1’ (16.6)

This relation has a critical value when the angle 6=0.. The critical angle 6. is such that

for © >0, no real solutions are found and its value is:

(1-¢&)
2VE

for a strong adiabatic shock. The critical angles in eq.(16.7) imply that for values of

tan 6. = and tan o = /%, (16.7)

0 > 0., where:

0c =7m/2 — 2ac (16.8)

the flow after the Sy shock is subsonic (Canté et al., 1988; Raga & Cantd, 1995). This
means that the jet will not expand inside a Mach cone, but will escape from the region of
the interaction between the jet and the cloud in all directions. In other words, a complete
disruption to the jet has occurred.

For the case of Herbig-Haro jets in which the shock S; is isothermal, Raga & Canté
(1995) made 2D numerical simulations which show the overall structure mentioned with
the very simple analytical arguments mentioned above. An example of their simulation is
shown in fig.(III.2).

As a short summary, what all this means is that the initial stages of a jet—cloud
interaction are determined by the incidence angle 6 and by the cloud to jet density ratio.
This ratio determines the velocity to which the jet begins to drill a hole into the dense
cloud. Whatever the final steady configuration will be, it will certainly show a jet going
through a passage made by the jet as a result of the collision. If the radius of the jet
is considerably smaller than the characteristic size of the cloud, the drilling of the jet
through the cloud will not cause a strong effect on the overall structure of the cloud.

Eventually, the jet—cloud collision will reach a steady state in which the jet penetrates
the cloud at a certain position and travels through it inside a channel drilled as a result
of the interaction. The trajectory of the jet is determined by the condition that the jet

maintains pressure equilibrium with the surrounding environment. In other words, as the
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Figure II1.2: Two dimensional time dependent numerical simulation of a Herbig—Haro
jet by Raga & Canté (1995). A jet directed at angle 8 = 25° towards the x-—axis is
injected from the left of the diagram. The cloud is in pressure equilibrium with its
surroundings and its density is assumed to be 1000 times greater than the density of
the incident jet. This simulations show the presence of a shock S, (see also fig.(III.1))
which starts to drill a hole into the cloud slowly. The initial velocity of the jet is v; =
100kms™!, the particle number densities of the jet, external medium and cloud are
5, 0.5and5 x 10?2 cm ™2 respectively. The temperatures of the corresponding regions is
1 x 10% 1 x 10* and 1K. Both diagrams show a time sequence of the particle number
density (left) and temperature (right) stratification. The successive frames are taken at
time intervals of 31.7 yr and the logarithmic contours correspond to factors of v/2.

material in the jet moves, it adjusts its pressure in such a way that it is in equilibrium

with the internal pressure of the cloud.

In what follows it will be assumed that this steady configuration has been achieved
by the jet as it penetrates the cloud and that its expansion takes place adiabatically.
The analysis will be carried out for cases in which the material in the jet moves at non—
relativistic velocities and also when it expands relativistically. In order to compare with
real astronomical objects, the structure of the cloud is modelled as an isothermal gas
sphere (for collisions with hydrogen clouds, most probably in the interstellar medium)
and also as gas which is in pressure equilibrium within a dark matter halo (for collisions

with galaxies).
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§17 Classical analysis

Once the steady state is reached, the jet penetrates the cloud and expands adiabatically.
Because of this, the trajectory of the jet is determined by Euler’s equation, eq.(10.6),

which can be written as:

9 (v - grad) v + kv’fi = —grad (w+ ), (17.1)

where w and v represent the heat function per unit mass and the velocity of the flow
inside the jet. The gravitational forces produced by the mass of the cloud in the moving
jet is given by the gradients of the gravitational potential ¢. The curvature k of the
trajectory appears in the term which is proportional to its normal direction fi. These two
terms are proportional to the gradients of the unit tangent vector ¥ in the following way:
v (v -grad) 9 =kA. From eq.(17.1) there are two equivalent ways of finding the required
trajectory. The first is due to Icke (1991) and is as follows. Multiplying eq.(17.1) by the

normal unit vector fi to the jet trajectory one finds:

kv’ = — =—fi-grad (W+ ), (17.2)

where R is the radius of curvature to the trajectory. Eq.(17.2) simply means that the
normal components of the gradients of the pressure in the jet (right hand side of that
equation) have to balance the centrifugal acceleration produced by the curvature of the
jet (left hand side of that equation).

The second method used to find the trajectory to the jet is due to Canté & Raga
(1996) and Raga & Canté (1996). Instead of performing scalar multiplication of eq.(17.1)
with a normal vector, contraction is carried out with a tangent vector #. This implies
that 9 - grad (’UZ/Z +w+ c])) = (0, that is, the path of the jet is described by Bernoulli’s
theorem eq.(10.7).

It is straightforward to show that if the flow in the jet is irrotational (as it is for the
case we are going to consider, according to the results presented below), both relations,
eq.(17.2) and Bernoulli’s law are equivalent. For, if the vorticity is zero, then from the

relation:

1
v X curlv = Egrad v — v -grad v

combined with Buler’s equation, it follows that grad (’UZ/Z—I—W—I— c])) = 0, which is a
particular form of Bernoulli’s law. Multiplication of this relation by the normal unit

vector fi gives eq.(17.2). Since it is natural to work with energies, the approach by Canté
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& Raga (1996) and Raga & Canté (1996) will be used in what follows.

Let us show now that under the conditions we have previously described, the trajectory
of the jet is two dimensional. From Euler’s equation, it follows that the left hand side
of eq.(10.6) is simply the force per unit mass experienced by a fluid particle as it moves.
Since all quantities in the right hand side of that equation depend only on the distance
from the cloud’s centre r, vector multiplication of the radius vector r with eq.(10.6) implies
rxdv/dt=0 . In other words, the specific angular momentum l=r1Xxwv is conserved as the
fluid moves. Since the radius vector is perpendicular to the angular momentum vector,
the motion is two dimensional, and so, polar coordinates (r, ) are used in the following
analysis.

Consider a situation in which the jet enters the cloud parallel to the x axis at a distance

To, so that its velocity vector is initially given by:

vo = —Ueyx = —U (cos Qo er —sin Qg ey, (17.3)

where ey, e, and e, are unit vectors in the directions x, r and ¢ respectively. Because
angular momentum is conserved and the motion is two dimensional, the velocity is most

simply written using eq.(17.3) as:

To .
v =ue + ?vo sin Qg €, (17.4)

in which v, =dr/dt represents the velocity in the radial direction.
Since the steady flow of the jet expands adiabatically, we can calculate the path of the

jet by means of Bernoulli’s equation, eq.(10.7):

%Jdv2+JdW+Jd¢=0> (17.5)

in which the line integrals are taken from the initial position of a given fluid particle. The

heat function per unit mass w of the flow in the jet is given by

w=T"p/p, (17.8)
and
N=(k—-1)/x (17.7)

for a gas with polytropic index k.

Substitution of eq.(17.4) and eq.(17.3) into the first integral of eq.(17.5) gives:
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To Yo sin dr )2 T0\2 .
O e

where we have used the fact that along the jet trajectory dr/v, =rd@/v, (Landau &
Lifshitz, 1995). Since the gas in the jet obeys a polytropic equation of state, we obtain
for the second integral in eq.(17.5):

de:g—é{(%)rq}, (17.9)

in which c% is the initial sound speed of the jet material. The integral for the gravitational

potential produced by the self-gravitating cloud is obtained from:

qup ~ GJ M(r) dr:4nGJd—;JT £200(E) dE, (17.10)
T ™ Jo

where M(r) and p.(r) represent the mass and density of the cloud at a distance r. Sub-
stitution of eqs.(17.8)-(17.10) into eq.(17.5) gives the relation followed by the path of the

jet as it expands:

dn 1 ) .o 2 (p)r
— =+= 1— - |l=] =1 -
do sin @g s o KFM% [ Po

&G (dr (7
m jgj £20(£)dE

T Ap2.2
Mges 0

in which 1= ro/r and Mg is the initial Mach number of the flow in the jet. The positive and
negative signs for the value of the derivative dn/d¢ in eq.(17.11) have to be chosen with
care. For example, if we consider the case in which no gravity and no pressure gradients
are taken into account (i.e. last two terms on the right hand side of eq.(17.11) are zero,
which corresponds to a straight trajectory) the derivative dn/de <0 for n. <1/sin @q and
vice versa. The equality n, =1/sin ¢ corresponds to the point for which a given fluid

element in the jet reaches the y axis during its motion in this particular case.

In the limit of high initial supersonic motion (Mg > 1) the third and fourth terms
in the right hand side of eq.(17.11) are important only when n = 1/sin @y and we can

simplify eq.(17.11) by making an expansion about this point. Indeed, in general terms, if:
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r
(pﬂ) = o+ Prsin @o + 07 sin’@o, (17.12)
0
and
b — po =4nG (& + Bnsin @o + (n? sinz(po) , (17.13)

are the expansions of the pressure and gravitational potential respectively about n =
1/sin @q, then eq.(17.11) takes the form:

d 12
My {a+bn+en2} (17.14)
de sin Qo ,

in which:

2(x—1)  8nG .
kKITM§  M3cs

281G )\
b=— (o 4 = ,
(Kng RV B) S o

a=1-—

ZC 8nG » .2
= (1424 2 ,
( vt vaa C) S o

to second order in msin @p. For the cases considered below, the general solution of
eq.(17.14) is (Gradshteyn & Ryzhik, 1994):

1 . Qo— @ 1 . 2e+b
= — {VAsin |[vV—e [ = = )| -b}, 17.15
n=s {\/_sm [ e ( S 0o + \/__earcsm T ( )
with A=b?—4ae. The angle 1\ subtended between the velocity vector of the jet streamline
with the x coordinate axis on its way out of the cloud, the deflection angle, can be

calculated from the relation tan1 =(vy,/vx)exit- In other words:

(17.16)

= arctan (sm @ (dn/de), — cos (pe) .

cos @, (dn/d @), + sin @

where the subindex e labels the values of different quantities at the position where the jet

exits the cloud. The exit azimuthal angle @, is given by:

. )
S0 %o {Zarcsm ¢ (17.17)

+b
= _ 7'[’
fem 0T e )

for not very strong deflections. The derivative (dn/de¢). is evaluated at n =1, with a
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negative choice of sign in eq.(17.11).

§18 Isothermal cloud

Let us consider now the case of an isothermal cloud, for which the density in the cloud p.

varies as a function of the position r in the following way (Binney & Tremaine (1997)):

g
pe =7 (18.1)

where ¢ is a constant of proportionality. In other words, because the jet and cloud are

maintained in pressure balance, the pressure acting on the jet is given by:

L (r—")z. (18.2)

T

For this isothermal case, it is easy to verify that the factors in the expansions for the
gravitational potential ¢ and the pressure P as defined by eqgs.(17.12)—(17.13) are given
by:

1-T((3-2r . 3
a:%), & = &ln(sin @o) + 3 &,
sin“' g 2
AT (1—-T) <
p=—F—, B = 2E, (18.3)
sin”' o
_r@Er-m s &
= RRVL =3

This solution corresponds to that found by Raga & Canté (1996) for the case in which no
gravity is present, i.e. &=p ={=0. From the solutions obtained above in eq.(17.14) and

eq.(18.3) it follows that the dimensionless parameter A defined as':

2

& L PoTh
2.2 2.2"
Moco Moco

A=G (18.4)
is a number that parametrises the required solution.
The deflection of jets in isothermal clouds may be important for interstellar molecular

clouds and the jets associated with Herbig-Haro objects. For this case we can obtain a

'The parameter A is an important number which can be obtained by dimensional analysis. For, the
problem in question is characterised by the gravitational constant G, a “characteristic length” ro and the
values of the velocity of the jet and the density at this point which are vy and po respectively. Three
independent dimensions (length, time and mass) describe the whole hydrodynamical problem. Since four
independent physical quantities (G, po, v, and o) are fundamental for the problem we are interested,
the Buckingham [T-Theorem (Sedov, 1993) of dimensional analysis demands the existence of only one
dimensionless parameter A, which is given by eq.(18.4).
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value for the parameter A . If we adopt a particle number density of ny~102cm 3

, and
a temperature T~ 10K for a cloud with radius ro~ 1 pc (Spitzer, 1998; Hartmann, 1998),

then

102 (1o \* no T\
e M3 (1pc> (1026m*3) (1OK) : (18.5)

The same calculation can be made for the cases of radio jets interacting with the gas inside
a cluster of galaxies. For this case, typical values are ng ~ 10 2cm 3, T~ 107K and 19 ~
100 kpc (Longair, 1992, 1998). With these values, the parameter A ~ 10*2/1\/%, exactly
as eq.(18.5).

The fact that jets are formed in various environments such as giant molecular clouds
and the gaseous haloes of clusters of galaxies with the same values of the dimensionless
parameter A provides a clue as to why the jets look the same in such widely different
environments.

From its definition, the parameter A can be rewritten as A = (3/47{)(GM/r)(1/v§),
where M is the mass within a sphere of radius rg. This quantity is roughly the ratio of the
gravitational potential energy from the cloud acting on a fluid element of the jet, to its
kinetic energy at the initial position ry. The parameter A is thus an indicator of how large
the deflections due to gravity are going to affect the trajectory of the jet. The bigger the
number A, the more important the deflection caused by gravity will be. In other words,
when the parameter A >> 1 the jet becomes ballistic and bends towards the centre of the
cloud. When A < 1 the deflections are dominated by the pressure gradients in the cloud
and the jets bend away from the centre of the cloud.

Fig.(II1.3) shows plots for three different values of A with initial Mach numbers of
Mo =5 and My =10. A comparison with a numerical integration of eq.(17.14) using a
fourth—order Runge-Kuta method is also presented in the figures by dashed lines. This
comparison shows that as long as the deflections are sufficiently small, or as long as
the Mach number of the flow in the jet is sufficiently large, the analytic approximations

discussed above are a good approximation to the exact solution.

§19 Gas within a dark matter halo

Let us consider next the case of a galaxy dominated by a dark matter halo for which its

density is given by the relation (Binney & Tremaine, 1997):

(19.1)

Pd.
Pa )2>

:m

in which a is the core radius and quantities with a star refer to the value at the centre of
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Figure IT1.3: Deflection produced in a jet due to the collision with an isothermal cloud
(semicircle) of radius 1. The jet penetrates the cloud from the right, parallel to the x axis.
Different trajectories are shown in each diagram for different initial heights of y /1o =0.05,
0.15, ... ,0.95 as measured from the x/rp axis. In each figure the top diagram corresponds
to the case in which gravitational effects are not considered (Raga & Cantd, 1996). The
middle and bottom diagrams represent trajectories for which gravitational effects are
taken into account and the parameter A has values of 107¢, 0.01 respectively in units of
the square of the initial Mach number M3 of the jet (see text). For the plots, a polytropic
index k=5/3 for the flow in the jet was assumed. The diagrams at the top and bottom
correspond to initial Mach numbers for the jet flow Mg =5 and Mg = 10 respectively.
The dashed lines in the graphs represent the direct numerical integration of the equation
of motion. The continuous lines are the analytic approximations discussed in the text.
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the galaxy.
The potential resulting from such a density profile can be calculated by means of
eq.(17.10),

1 T2 a T
_ — 2)_ Z bt ) =
$a — Pa, =4nGpg,a {zln [1 + <a> ] + - arctan (a> 1} , (19.2)

in which the value of the gravitational potential ¢4, has been evaluated at the centre of
the galaxy r, =0. If the gas in the galaxy is in hydrostatic equilibrium with the dark
matter halo, then grad p= —pgrad ¢q4. In this case, the enthalpy of the isothermal gas

is given by:

wW—w, =—dq + ba, = cf In (pﬂ) , (19.3)

*

and so the pressure takes the value:

p =, exp{(—da +ba,) /F} . (19.4)

It is possible to simplify the above expressions by using the fact that for astronomical

cases ro>> a. In other words:

— =n*, (19.5)

where the dimensionless parameter k is given by':

2
k=—dnG P (19.6)
C‘k
Adopting these approximations, the required analytic solutions can be found:
1 . kr
x = 7 (BT + 1) (k" 4+ 2) sin®™ @o,
p =—kl (24 kT)sin*" o, (19.7)

1
(= Ezcr (kT + 1) sin*" o,

where for simplicity it was assumed that &=p=C_=0. In other words, the gravitational

'In exactly the same form as it was domne in the footnote of p.52, the dimensionless parameter k (apart
from an unimportant proportionality factor of —47t ) can be calculated by standard dimensional analysis.
In this case the important parameters in the problem are the gravitational constant G, the characteristic
length a and the sound speed c, together with the density p, evaluated at the centre of the cloud.



A4 JA/3 VU U AT AN A AJAVOAN L ANT I NI e A4 41N A JAJ A

field induced by the mass of the cloud has been neglected. Using typical values (Binney
& Tremaine, 1997) for galaxies then p,~0.1 My pc 3, a~1kpc . Taking central values for
the gas in the galaxy as n,~1cm > and T,~10°K then k~—10. Fig.(II1.4) shows plots
for different values of Mg and k.

The number k can be rewritten as k = — (4/(4 —m)) (GM/a)(1/c2), where M is the
mass of a sphere with radius a. This quantity is proportional to the gravitational energy
of the cloud evaluated at the core radius divided by the sonic kinetic energy that a fluid
element in the jet has. In other words, in the same way as in Section §18, the dimensionless

number k is an indicator as to how big deflections produced by gravity are.

§20 Relativistic analysis

Let us consider the case in which relativistic effects are included in the collision between
a relativistic jet and a stratified high density region. In order to simplify the problem,
the self gravity of the cloud acting on the jet is ignored. For this case, the relativistic
generalisation of Euler’s equation is given by eq.(9.6), in which w and p are the enthalpy
per unit volume and the pressure of a given fluid particle in its proper frame of reference
respectively. The speed of light is ¢ and v is the standard Lorentz factor.

The arguments used to prove the conservation of the angular momentum of the jet in
section §17 can be generalised for the relativistic case in the following way. The term in
brackets in the left hand side of eq.(9.6) represents the classical force per unit mass acting
on an element of fluid as it moves. By considering steady flow and because the pressure
depends only on the radial coordinate r, vector multiplication of the radius vector r with
eq.(9.6) shows that the quantity l =1 x v is conserved during the motion of the fluid.
This quantity corresponds to the specific angular momentum in classical mechanics, but
is not its relativistic counterpart, which is given by r x yv. The constancy of | implies
that motion is two dimensional and so eqs.(17.3)-(17.4) are valid in the relativistic case
as well.

Multiplication of eq.(9.6) by the unit tangent vector 9 for steady adiabatic flow, shows
that the trajectory of the jet is described by Bernoulli’s law (eq.(9.7)):

Jd (X2) =o. (20.1)

n

The line integral is taken from the initial position of a given fluid particle to its final
position. The particle number per unit proper volume is n and we assume that the
electrons in the jet are ultrarelativistic, so that the equation of state is given by p=e/3
with e being the internal energy density of the plasma. The requirement that the pressure
of the jet equals that of the cloud, together with the fact that pocn?/3, makes it possible
to integrate eq.(20.1) giving:
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Figure III.4: Deflection produced in a jet as it travels across a galaxy, for which its
gravitational potential is dominated by a dark matter halo. The jet penetrates the galaxy
parallel to the x/rp axis. Various trajectories are shown in each diagram for different
initial heights y/ro=0.5, 0.15,...,0.95 measured from the x/vy axis. The top and bottom
diagrams were calculated for the case of a non relativistic jet with an initial Mach number
of My =10 and My =20 respectively. For each of this diagrams a value of k=—1, -2, —3
was used for the top, middle and bottom panels respectively (see text). The dashed lines
in the figures represent the direct numerical integration of eq.(17.14) with the pressure
given by eq.(19.4) for the case in which the ratio of the core radius a to the initial radius
To is given by a/ro =107 « 1. The continuous lines are analytic approximations found

under this conditions.
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1/2
dn c v, . L (p\"*?
4 = )1 OnZsin? oy —vii | = 20.2
o vosm@o{ e g0 —ve” (2 (20.2)

)

in which n =ro/r. The sign of dn/d¢ in eq.(20.2) varies as the jet crosses the cloud.
For example, for the ultrarelativistic case, in which a straight trajectory is expected, it is
positive for 1, >1/sin g, and negative when the inequality is inverted. A general analytic
solution of eq.(20.2) can be found because, for high relativistic velocities, the third term
on the right hand side of eq.(20.2) is important only for n=1/sin ¢@¢. In other words,
the pressure stratification of the cloud can be written as eq.(17.12) with the substitution
I'—1/2. We can therefore expand eq.(20.2) about n=1/sin @q to obtain a relation like
eq.(17.14) but with:

o
(l:]——z,
0
b= P g 20.3
= —— sin @o, (20.3)
Yo

e =— (% + 1) sinz(po.
Y

§21 Isothermal cloud and dark matter halo

As in section §18, consider the case of an isothermal cloud being penetrated by the jet.
In this case, it is possible to find an exact solution to the problem, since eq.(18.2) and
eq.(20.2) can be used to show that:

1/2

d 1 : :

an _ +— C—Z (1 —m/gz) —n?sin®@o (21.1)
deo sin @o | 5 .

In other words, the solution is the same as that already found in eq.(17.14) and eq.(17.15)

but with:

2 2
a= (i) , b=— (i) v~2, e = —sin? @o. (21.2)
U0 24

Fig.(II1.5) shows plots of the trajectory of the jet for different values of its initial velocity.

Let us now consider the case in which the gas in a galaxy is in hydrostatic equilibrium
with a dark matter halo. As it was shown in section §19, for vy > a, the variation of the
pressure in the galaxy is given by eq.(19.5) and the trajectory of the path of the jet is
given by eq.(17.14) and eq.(17.15) together with eq.(19.7) and the substitution ' — 1/2.
Fig.(I11.6) shows plots of this for k=—3 and different values of the initial velocity of the
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Figure ITL.5: Deflection of a relativistic jet produced by its collision with an isothermal
cloud (semicircle). The jet is assumed to travel parallel to the x axis at the moment it
enters the cloud from the right. In each plot different trajectories are shown for different
values of the initial height of the jet y/ro=0.05, 0.15,...,0.95 as measured from the x/T¢
axis. The top, middle and bottom panel plots were calculated for values of the initial
velocity of the jet vo in units of the speed of light ¢ of 0.99, 0.97, 0.95 respectively.

jet vg.

§22 Discussion

Once an observed deflection is given, it is possible to work backwards and find useful
properties concerning the initial interaction of a jet with a stratified density region. For
example, by taking the “standard” values mentioned in sections §18 and §19 for the
pressure and density in the stratified gas it is possible to calculate the initial azimuthal
angle @q for a given initial velocity of the jet. In order to illustrate this, consider eq.(17.16)
and eq.(17.17). Because the derivative (dn/d¢), has a negative value at the point at which
the jet leaves the cloud, it is possible to find the value of the deflection angle cos. This
angle is a function of the velocity of the jet vy and the initial azimuthal angle @g. To
visualise this, an example is shown in fig.(II.7) for the case in which a relativistic jet
interacts with an isothermal cloud. The contour levels for which cos1 =const give the
required relation between the initial velocity and azimuthal angle. Fig.(III.8) shows two
examples of these contours.

Different combinations of the various parameters involved (or the known observables)
in the problem can be assumed so that, for a given deflection, the other quantities can be

calculated. For instance one can ask for the values of the central density of the gas in the
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Figure ITI1.6: Trajectory of a relativistic jet as it crosses a galaxy. The gas in the galaxy
is assumed to be in hydrostatic equilibrium with a gravitational potential given by a dark
matter halo in the galaxy. It is assumed that the jet enters the galaxy parallel to the x
axis at a height of y/ro=0.05, 0.15, ... ,0.95 in different cases. The plots were calculated
for the case in which the parameter £ = —3 and the initial velocity of the jet in units
of the speed of light is 0.999, 0.995 and 0.99 from top to bottom. Continuous lines are
analytic approximations to the problem and dashed ones are direct numerical solutions.

cos P

Figure III.7: Three dimensional plot showing the variations of the deflection angle 1
which is defined as the azimuthal angle the velocity of the flow makes with the x axis at
the moment it leaves the cloud. The deflection angle is a function of the initial velocity
of the jet vo and the initial azimuthal angle @o. The plot was produced for the case in
which a relativistic jet interacts with an isothermal cloud.
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Figure III.8: Variations of initial azimuthal angle @¢ as a function of velocity vp in
units of the speed of light c for constant values of the deflection angle 1. The angle 1
is the azimuthal angle the velocity vector of the flow in the jet makes with the x axis at
the moment it leaves the cloud. Every plot was calculated for cos{=const with values
of VP given by 175°, 170°,...,155°. The gradient of 1 decreases towards the lower left
part of each diagram. In other words, deflections become stronger as the curves approach
this region on the diagram. An isothermal sphere and an isothermal gas in hydrostatic
equilibrium with a dark matter halo were assumed for the top and bottom diagrams
respectively in the case of a relativistic jet.

cloud, the density in the jet, etc.

The most important consequence of the calculations presented in this chapter is the
sensitivity of the deflection angles to variations in velocity —see for example fig.(IIL.8).
This sensitivity is due to the fact that the force applied to a given fluid element in the
jet (due to pressure and gravitational potential gradients) is the same independent of the
velocity of the flow in the jet. However, as the velocity of the flow in the jet increases,
there is not enough time for this force to change the curvature of the jet soon enough,

giving rise to very straight jets.






Chapter IV

Stability of non-straight jets

In section §5, we discussed the possible mechanisms which directly affect the shape of a jet.
However, these mechanisms may not last for a long time and may result in instabilities.
The most obvious problem would be if the collimation of the jet were no longer achieved
efficiently. This occurs when the Mach number of the flow decreases to such an extent
that it becomes subsonic. The most natural way of making a supersonic flow to become
subsonic is through the creation of a strong discontinuity in the hydrodynamical quantities,

that is, through a shock wave.

When a jet bends it is naturally in direct contact with its surroundings and entrainment
from the external gas might cause disruption to its structure (Icke, 1991). However,
if that problem is bypassed, for example, by an efficient cooling, there remains a high
Mach number collimated flow within a curved jet. When a supersonic flow bends, the
characteristics emanating from it tend to intersect at a certain point in space (Landau
& Lifshitz, 1995; Courant & Friedrichs, 1976). Since the hydrodynamical values of the
flow along non—parallel characteristic lines have different constant values, this intersection
causes the different values of these quantities to be multivalued. This situation cannot

occur in nature and a shock wave is formed to overcome this problem.

The formation of internal shocks inside the jet is potentially extremely dangerous
since the flow behind the shock is subsonic and collimation is no longer possible. If the
characteristics intersect outside the jet, then a shock wave is not formed and it seems that
in this case the jet can survive a bending. However, as will be shown in this chapter, the
Mach number decreases in a bend and the rate of change of the Mach angle with respect to
the bending angle, defined as the angle the jet makes with its original straight trajectory,
increases without bounds as the Mach number tends to unity. This means that there is
a stage in which the Mach angle increases faster than the bending angle. This causes the
characteristics in the jet to intersect and form a terminal shock. The aim of this chapter
is to investigate these physical mechanisms, in particular, to investigate the formation of

internal shocks in the structure of a jet.
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§23 Prandtl-Meyer flow

Let us describe briefly the exact solution of the equations of hydrodynamics for plane
steady flow depending on one angular variable ¢ only. This problem was first investigated
by Prandtl and Meyer in 1908 (Landau & Lifshitz, 1995; Courant & Friedrichs, 1976)
for the case in which relativistic effects were not taken into account. The full relativistic
solution to the problem is due to Kolosnitsyn & Stanyukovich (1984).

For this case, Euler’s equation, eq.(9.5) and the continuity equation, eq.(9.1) can be

written:

d
wny + (";{%ﬂ —0, (23.2)
wy/n = const, (23.3)

where v, and vy are the components of the velocity in the radial and azimuthal directions
respectively. Eq.(23.3) is the Bernoulli equation, eq.(9.7), for this problem.

Using the definition of the speed of sound, eq.(11.3), in eq.(23.2) with the aid of
eq.(23.3) it is found that:

d’Uq)

Ur + d(I) +'U¢

2 2
(1 - ‘Cl—z) %%ln(w/n) —0. (23.4)

On the other hand, differentiation of v 2 with respect to the azimuthal angle ¢ and using
eq.(23.3), gives:

2,2
Vg (vr + %) +c? (1 _ o ;%) %ln (w/n) =0. (23.5)

Multiplication of eq.(23.4) by v, and substracting this from eq.(23.5) gives:

2 2 UTZ

On the other hand, Bernoulli’s equation, eq.(23.3), together with the value of the
specific enthalpy for a polytropic gas given in eq.(12.4), can be rewritten

1 'Urz-l-vé : 1 a? 2_1 1 a% 7
a2 Txk—12) T\ k=1e) (23.7)
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in which it has been assumed that at some definite point, the flow velocity vanishes and
the speed of sound has a value ag there. It is always possible to make the velocity zero at
a certain point by a suitable choice of the system of reference.

Eqgs.(23.6)-(23.7) can be solved in terms of v, and vg:

v2/ct =1—F(a), (23.8)
vj = a’F(a), (23.9)

where

. 1 a2\? a2\ " 1 a2\ ?
20 v (1 0 _ _
F(a) = (1 — CZ) (1 Cz) (1 — Cz) . (23.10)

Because v,dv, = c’F(a)F/(a)da, eq.(23.1) gives the required solution (Kolosnitsyn &
Stanyukovich, 1984):

¢+¢o=icja Fla)da

This equation gives the speed of sound as a function of the azimuthal angle. From

egs.(23.8)-(23.9) it follows that the radial and azimuthal velocities can be obtained as

(23.11)

a function of the same angle ¢. Because of this, all the remaining hydrodynamical vari-
ables can be found. The sign in eq.(23.11) can be chosen to be negative by measuring the
angle ¢ in the appropriate direction and we will do that in what follows.

Let us consider now the case of an ultrarelativistic gas and integrate eq.(23.11) by

parts, to obtain:

d
G+ Po = %arccosF(a)—l—cja—(zlarccosF(a). (23.12)

For the case of an ultrarelativistic gas, the speed of sound a is given by eq.(12.6). In other
words, this velocity is constant and so the integral in eq.(23.12) is a Lebesgue integral.
Since this integral is taken over a bounded and measurable function over a set of measure
zero, its value is zero.

Using eqgs.(23.8)-(23.9) and eq.(23.12) the desired solution is obtained (Kolosnitsyn &
Stanyukovich, 1984; Konigl, 1980):

v, = csin {‘\/K-] (b + c])o)} , (23.13)
Up =VK—1 CCOS{\/K—] (b + q)o)}, (23.14)
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for an ultrarelativistic equation of state of the gas.
For the classical case, in which ¢ — oo, eq.(23.11) gives for a polytropic gas with

polytropic index k:

¢+ bo=—

K41 d¢
K—1J,/]_C2’

where

12
C_E K+ 1 1- (71— 1 a_% z
T cVk—1 k—1¢c2 '

and so, the required solution is (Kolosnitsyn & Stanyukovich, 1984):

¢+ o = Kt arccos (i) , (23.15)

K—1 Cx

where the speed of sound a has been rewritten as ¢ to be consistent in the non-relativistic

case. The critical velocity of sound c. is given by (Landau & Lifshitz, 1995):

2
2 2

= . 23.16
Cs K 1 €o ( )

The value for the velocities can thus be calculated from eq.(23.1) and eq.(23.9) with
Fla)=1:

[k+1 [k —1
Ur = %C*Sin z?((b_(bO)» (23.17)
[k —1
Ug = C = C, COS Zﬁ(cp—qpo). (23.18)

Some important inequalities must be satisfied for the flow under consideration. First
of all, eq.(23.11) together with eq.(12.4) and the first law of thermodynamics imply that
dp/ddp <0. Using this inequality and the fact that de =c?dp/a? combined with the first
law of thermodynamics, it follows that dn/d¢ <0. Also, using eqgs.(23.8)-(23.9) it follows
that dv/d¢p o« —da/d¢p and necessarily dv/dd >0.

On the other hand, the angle x that the velocity vector makes with a definite axis is
related to the velocity and the azimuthal angle ¢ by:

X = ¢ + arctan vy /v) (23.19)

as it is seen from fig.(IV.1). Thus, since the ¢ component of Euler’s equation, eq.(9.5)
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Figure IV.1: Relation between the velocity vector v =v,@; + v@4 and the angle x, as
a function of the azimuthal angle ¢. x is the angle that the velocity vector makes with
certain fixed axis with origin O.

implies that:

0 2
( 'Ucb) YUy W +Cza(ou/n) Y

v+ oo n on

it follows that dx/dp=— (v?y?w/c?) - dp/do.
In other words, we have proved that for the flow for which we are concerned, the

following inequalities are satisfied:

dp/dd <0, dn/ddp <0, dv/dp >0, dyx/dd > 0. (23.20)

A flow with these properties is often described as a rarefaction wave (Landau & Lifshitz,
1995) and we will use this name in what follows.

Another, very important property of this rarefaction wave is that the lines at constant
¢ intersect the streamlines at the Mach angle, that is, they are characteristics. Indeed,
from fig.(IV.1), it follows that the angle o between the line ¢ = const and the velocity
vector v is given by sin & = v, /v. Using egs.(23.8)-(23.10) it follows that this relation can
be written as eq.(11.20). Because all quantities in the problem are functions of a single
variable, the angle ¢, it follows that every hydrodynamical quantity is constant along the

characteristics.

§24 Steady simple waves

Let us consider now the two dimensional problem of steady plane parallel flow at infinity

which turns through an angle as it flows round a curved profile. A particular case of
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this problem occurs when the flow turns through an angle (Landau & Lifshitz, 1995).
For this particular situation the Prandtl-Meyer flow is obviously the solution and so, the
hydrodynamical quantities depend on a single variable, the angle ¢ measured from a
defined axis at the onset of the curvature. Because of this, all quantities can be expressed
as functions of each other. Since this case is a particular solution to the general problem,
it is natural to seek the solutions of the equations of motion in which the quantities
P, M, vy, vy can be expressed as a function of each other. Evidently this imposes a
restriction on the solution of the equations of motion since for two dimensional flow, any
quantity depends on two coordinates, x and y, and so any chosen hydrodynamical variable
can be written as a function of any other two.

Because of the fact that the flow is uniform at infinity, where all quantities are constant,
particularly the entropy, and because the flow is steady, the entropy is constant along a
streamline. Thus, if there are no shock waves in the flow, the entropy remains constant
along the whole trajectory of the flow and in what follows we will use this result.

In this case, Euler’s equation, eq.(9.6), and the continuity equation, eq.(9.1), are re-

spectively:

9 d 29
L P
0x oy Yw oy
% lyuen) + - (yuyn) =
0x Y dy Yo =

Rewriting these equations as Jacobians' we obtain:

a(UX)y) a(vx,x) _ CZ a(pvy)

"oyl Moyl | ywalxy)

LA u) | Ayx) @ apx)

d(x,y) 7 alxy) ywd(x,y)’
d(yvxn,y) Olyyym,x)

— =L =0.
9(x,y) a(x,y)

)

We now take the coordinate x and the pressure p as independent variables. To make this
transformation we have to multiply the previous set of equations by 9(x,y)/0(x,p). This
multiplication leaves the equations the same, but with the substitution 9(x,y)— 9(x,p).
Expanding this last relation and because all quantities are now functions of the pressure

p but not of x, it follows that:

'The Jacobian d(a, b)/d(x,y) is defined as:

9(a,b) _ det [aa/ax aa/ay]
(x,y) 0b/0x 0b/dy|’

It is obvious that d(a,y)/9d(x,y)=0a/0x, and that d(a,b)/d(x,y)=—0(b,a)/d(x,y)
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( ay) du, ¢ dy
Y — U | — = ———,

ox/ dp yw0x
U_Uay dvy__c2 dy
Yoo ox /) dp T ywox’

oy \ d(yn) du, Oyduv|
(”U ”"ax) b T™MVap oaxdp 0

Here we have taken 0y/0x to mean the derivative at constant pressure: (dy/0x),.
Since every hydrodynamic quantity is assumed to be a function of the pressure, then in
the previous set of equations it necessarily follows that dy/0x is a function which depends

only on the pressure, that is (dy/9x),, = f1(p). Therefore:

y =xf1(p)+f2(p). (24.1)

No further calculations are needed if we use the solution for the case in which a
rarefaction wave is formed when flow turns around an angle (Landau & Lifshitz, 1995).
This solution is given by the results of section §23. As was mentioned in that section,
all hydrodynamical quantities are constant along the characteristic lines ¢ =const. This
particular solution of the flow past an angle obviously corresponds to the case in which
f2(p)=01in eq.(24.1). The function f(p) is determined from the equations obtained in
section §23.

For a given constant value of the pressure p, eq.(24.1), gives a set of straight lines in
the x—y plane. These lines intersect the streamlines at the Mach angle. This is due to the
fact that the lines y=xf1(p) for the particular solution of the flow through an angle have
this property. In other words, one family of characteristic surfaces correspond to a set of
straight lines along which all quantities remain constant. However, for the general case,

this lines are no longer concurrent.

The properties of the flow as described above are analogous to the non-relativistic
equivalent known as simple waves (Landau & Lifshitz, 1995). In what follows we will use

this name to refer to such a flow.

Let us now construct the solution for a simple wave once a fixed profile is given.
Consider the profile as shown in fig.(IV.1). Plane parallel steady flow streams from the
left of the point O and flows around the given profile. Since we assume that the flow
is supersonic, the effect of the curvature starting at O is communicated to the flow only
downstream of the characteristic OA generated at point O. The characteristics to the left
of OA, region 1, are all parallel and intersect the x axis at the Mach Angle oy given by
eq.(11.20):
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Figure IV.2: Supersonic uniform flow at the left of the diagram bends around a curved
profile OH. The Mach angle «; is the angle made by the characteristics and the stream-
lines before the onset of the curvature. The characteristics make an angle ¢ with the

N

“continuation” of the rarefaction wave formed at the onset of the curvature and the angle
¢ 1s measured from the line 0A’. The curvature causes the characteristic lines to inter-
sect eventually and this occurs at point K in the diagram, giving rise to a shock wave
represented as the segment KL.

. 1= (/e q
Sin o = ——— — (24.2)

V1 —(a/c)? v’

where the velocity vy is the velocity of the flow to the left of the characteristic OA. In
egs.(23.11)-(23.18) the angle ¢ of the characteristics is measured with respect to some
straight line in the x—y plane. As a result, we can choose for those equations the constant
of integration ¢o= 0. This means that the line from which the angle ¢ is measured has
been chosen in a very particular way. In order to find the line which is the characteristic
for =0, let us proceed as follows. When ¢ =0 and the gas is ultrarelativistic, eqs.(23.13)-
(23.14) show that the velocity v=a and for the classical case, it follows from egs.(23.17)-
(23.18) that the velocity takes the value v =c. In both cases this means that the line =0
corresponds to the point at which the flow has reached the value of the local velocity of
sound. This, however, is not possible since we are assuming that the flow is supersonic
everywhere. Nevertheless, if the rarefaction wave is assumed to extend formally into the
region to the left of OA, we can use these relations and then the characteristic line must

correspond to a value of ¢ given by:
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¢ = K+} arccos (C—1) , (24.3)

K— Cy
for a classical gas according to eq.(23.15), and

1— (v /c)?
T—(a/c)?’

¢ = € arccos (24.4)
a

for the ultrarelativistic case according to eq.(23.7), eq.(23.10) and eq.(23.12). The angle

between the characteristics and the x axis is then given by: ¢. — ¢, where ¢. = o1 +

¢1, and the angle o1 is the Mach angle in region 1. The x and y velocity components in

terms of the azimuthal angle O are given by:

vy = v cosb, vy =vsino, (24.5)

and the values for the magnitude of the velocity, the angle 0 and the pressure are given
by:

2 . —1
v? = c? {1 + p— sin? z?q)} , (24.6)
0 :(b*_(b_(x»
kK—1 kK—1 (24.7)
—q)*—q)—arctan{\/K+1 cot\/K_H(b},
—1
P = p. cos?/(x71) z?(b, (24.8)

for a classical gas according to egs.(23.15)-(23.18) and using the fact that the Poisson

2¢/(&=1) = const. In the case of an ul-

adiabatic for a polytropic gas means that: pc~
trarelativistic gas, eqs.(23.12)-(23.14) together with Bernoulli’s equation and the fact that

the enthalpy density w=«kp/(k — 1) give:

U2:C2{1—(Z—K)COSZ\/K—1(I)}, (24.9)

0= (b* - ¢) - &,
(24.10)
:c])*—q)—arctan{'\/K—1cot\/K—1c])},
P =10 (2= k)2 cog /(1) /" T . (24.11)

Since the angle d, — ¢ is the angle between the characteristics and the x axis, it follows

that the line describing the characteristics is:
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y =xtan (b, — ) + G(d). (24.12)

The function G(¢) is obtained from the following arguments for a given profile of the
curvature (Landau & Lifshitz, 1995). If the equation describing the shape of the profile is
given by the points X and Y where Y=Y (X), the velocity of the gas is tangential to this

surface, and so:

dy
t = —. 24.13
an© ax ( )

Now, the equation of the line through the point (X,Y) which makes an angle ¢, — ¢ with

the x axis is:

y—Y=(x—X)tan (p. — ¢). (24.14)

Eq.(24.14) is the same as eq.(24.12) if we set:

G(p) =Y —Xtan(p. — P). (24.15)

If we start from a given profile Y = Y(X) then, using eq.(24.13) we can find the para-
metric set of equations: X=X(0) and Y=Y(0). Substitution of 6 =0(¢) from eq.(24.7)
or eq.(24.10) depending of whether the gas is classical or ultrarelativistic, we find X =
X(¢p) and Y=Y(¢). Substitution of this in eq.(24.15) gives the required function G(¢).

If the shape of the surface around which the gas flows around is convex, the angle 6 that
the velocity vector makes with the x axis decreases downstream. The angle p—¢. between
the characteristics leaving the surface and the x axis also decreases monotonically. In other
words, characteristics for this kind of flow do not intersect and we form a continuous and
rarefied flow.

On the other hand, if the shape of the surface is concave as shown in fig.(IV.2), the
angle 0 increases monotonically and so does the angle the characteristics make with the
x axis. This means that there must exist a region in the flow in which characteristics
intersect. The value of the hydrodynamical quantities is constant for every characteristic
line. This constant however changes for different non—parallel characteristics. In other
words, at the point of intersection different hydrodynamical quantities —for example, the
pressure— are multivalued. This situation can not occur and results in the formation of a
shock wave. This shock wave cannot be calculated from the above considerations, since
they were based on the assumption that the flow had no discontinuities at all —the entropy

was assumed to be constant. However, the point at which the shock wave starts, that is
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point K in fig.(IV.2), can be calculated from the following considerations. We can work
out the inclination of the characteristics ¢ as a function of the coordinates x and y. This
function ¢(x,y) becomes multivalued when these coordinates exceed certain fixed values,
say xo and yo. At a fixed x=x( the curve giving the value of ¢ as a function of y becomes
multivalued. That is, the derivative (0¢/dy), =00, or (dy/dd), =0. It is evident that
at the point y=yp the curve ¢p(y) must lie in both sides of the vertical tangent, else the
function ¢(y) would already be multivalued. This means that the point (xp,yo) cannot
be a maximum, or a minimum of the function ¢(y) but it has to be an inflection point.
In other words, the coordinates of point K in fig.(IV.2) can be calculated from the set of
equations (Landau & Lifshitz, 1995):

ay B aly B
(5e).=o (&)= (24:10)

When the profile is concave, the streamlines that pass above the point O in fig.(IV.2)
pass through a shock wave and the simple wave no longer exist. Streamlines that pass
below this point seem to be safe from destruction. However, the perturbing effect from
the shock wave KL influences this region also, and so it is not possible to describe the flow
there as a simple wave. Nevertheless, since the flow is supersonic, the perturbing effect of
the shock wave is only communicated downstream. This means that the region to the left
of the characteristic PK (which corresponds to the other set of characteristics emanating
from point P) does not notice the presence of the shock wave. In other words, the solution
mentioned above, in which a simple wave is formed around a concave profile is only valid
to the left of the segment PKL.

§25 Curved jets

Let us now use the results obtained in sections §23 and §24 and apply them to the case
of jets that are curved due to any mechanism, for example the interaction of the jet with
a cloud as was discussed in Chapter III.

The greatest danger occurs when a jet is bent and forms internal shock waves. This
is because, after a shock, the normal velocity component of the flow to the surface of
the shock becomes subsonic and the jet flares outward. Nevertheless, as we have seen in
section §24, the shock that forms when gas flows around a curved profile (such as a bent
jet due to external pressure gradients) does not start from the boundary of the jet. It
actually forms at an intermediate point to the flow. In other words, it is possible that, if
a jet does not bend too much the intersection of the characteristic lines actually occurs
outside the jet and the flow can curve without the production of internal shocks.

As we have seen in section §24 the Mach angle of the flow, relativistic and non-

relativistic, does not remain constant in the bend —see for example eq.(24.7) and eq.(24.10).
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The Mach number monotonically decreases as the bend proceeds.

Eq.(24.7) and eq.(24.10) imply that:

tanox = —pcot u(ax+ 60 — ). (25.1)

where

\/(K— 1)/(k+1) if the gas is classical,

(25.2)
vKk—1 for an ultrarelativistic gas.

g
1l

As was mentioned above, if the jet is sufficiently narrow, it appears that it can safely
avoid the formation of an internal shock. However, differentiation of eq.(25.1) with respect
to the angle the velocity vector makes with the x axis, that is the deflection angle 6,

implies that:

da 1 M+1
with
K if the gas is classical,
r= (25.4)

k/(2—«k) for an ultrarelativistic gas.

The Mach number M is given by eq.(11.22) and eq.(11.20) respectively. As the Mach
number M — 1, then the derivative do/d® — co. This means that the rate of change
of the Mach angle with respect to the deflection angle grows without limit as the Mach
number decreases and reaches unity. On a bend, the Mach number decreases and care is
needed, otherwise characteristics will intersect at the end of the curvature. There is only
one special shape for which this effect is bypassed and this occurs when the increase of 0
matches exactly with the increase of « (Courant & Friedrichs, 1976), but of course, this is
quite a unique case. It appears however, that whatever the thickness of the jet it cannot
be bent more than the point at which do/dO exceeds the rate of change of 0 with respect
to the bending angle 6. In other words, da/d0<d6/d0=1. From this last inequality and
eq.(25.3) a value of the Mach number can be obtained (Icke, 1991):

M, = : (25.5)

If the Mach number in the jet decreases in such a way that the value M, is reached,

then a terminal shock is produced and the jet structure is likely to be disrupted. It is
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important to note that this terminal shock is weak since M 2> 1 and so, it might not be
too disruptive. Nevertheless, this monotonic decrease of the Mach number makes the jet
to flare outwards, even if the terminal shock is weak.

Let us now calculate an upper limit for the maximum deflection angle for which jets
do not produce terminal shocks. In order to do so, we rewrite eq.(25.1) in the following

way:

—0 = arcsin % + ! arctan {p\/ M2 —1 } — du (25.6)
m

To eliminate the constant ¢, from all our relations, we can compare the angle 6 evaluated
at the minimum possible value of the Mach angle M =M, with 0 evaluated at its maximum

value M =oc0. In other words, the angle Op,,x defined as:

, , 74.21° for the classical case,
Omax = 0(M=M,) —0(M=00) = (25.7)
47.94° for an ultrarelativistic gas.

is an upper limit to the deflection angle. Jets which bend more than this limiting value
Omax develop a terminal shock and the jet will flare outward.

This upper limit however, does not mean that the jet is immune from developing an
internal shock if it is bent by a smaller angle. Indeed, let us suppose that the jet bends and
that the curvature it follows is a segment of a circle as it is shown in fig.(IV.3). According
to the figure, the equation of the characteristic OA that emanates from the point O, where

the curvature starts is:

y=xtanax (25.8)

Once the flow has curved dO degrees, the characteristic at this point is given by:

y = (x —RdO) tan(x + doc+ d)
~ xtan « + x(doc+ dB)/ cos” « — RdO tan «,

where R is the radius of curvature of the circular trajectory. The intersection of this

characteristic and that given by eq.(25.8) occurs when the y coordinate has a value:

Rsin? o

“1+da/de’

Substitution of eq.(25.3) gives (Icke, 1991):
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Figure IV.3: Sketch of a curved jet of radius D that develops a shock at the beginning
of the curvature. The curve is assumed to be a circle with radius R. The Mach angle of
the jet is o at the left of the characteristic OA that emanates from the point where the
bending starts.

D 2
= (MZ - 1) M, (25.9)

Using eq.(25.6) and eq.(25.9) it is possible to make a plot in which two zones separate
the cases for jets which develop shocks at the onset of the curvature, and the ones that
do not. Indeed, we can plot the ratio of the width of the jet D to radius of curvature R
as a function of the difference 0 — 0, between the deflection angle 0 and the maximum
deflection angle 8, =0(M,), as is shown in fig.(IV .4).

Jets for which the ratio D/R lies below the curve do not develop any shocks at all. For
example, consider a jet with a given Mach number for which its ratio D/R is given. As
the width of the jet increases (or the radius of curvature of the profile decreases), it comes
a point in which a shock at the onset of the curvature is produced. In the same way, jets
with a fixed ratio D/R for a given Mach number which are initially stable —so that they
lie below the curve- can develop a shock at the beginning of the curvature by increasing
the bending angle of the curve.

The relativistic Mach angle is smaller for a given value of the velocity of the flow than
its classical counterpart as it was proved in Section §11 —see for example fig.(II.2). This
fact is extremely important when analysing the possibility of the intersection of different
characteristics in a jet that bends. For a relativistic flow, the characteristics, which make
an angle equal to the Mach angle to the streamlines, are always beamed in the direction

of the flow. Thus, when a jet starts to bend the possibility of intersection between some
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Figure IV.4: Plot of the maximum ratio D/R as a function of the difference 8 — 0,
where 0 is the deflection angle and 0, is the maximum bending angle a jet can have in
order not to produce a terminal shock. The plot refers to the points for which a shock
at the beginning of the curvature (which was assumed to be a circle) has developed. Jets
with parameters which lie below the curve in any case do not develop any internal shocks
at all for this particular circular trajectory. The plot at the top was calculated using
the results in which the gas is classical and its polytropic index is 5/3. The plot at the
bottom was made by considering the gas to be ultrarelativistic and relativistic effects in
the bulk motion of the flow were taken into account. For this second plot, the polytropic
index was assumed to be 4/3. The numbers in every plot correspond to the values of the
Mach number in the flow.
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characteristic line in the curved jet and the ones before the flow has curved, become more
probable than their classical counterpart.

This difference results in a severe overestimation of the maximum bending angle Opax.
For example, Icke (1991) used the classical analysis in the discussion of the generation of
internal shocks due to bending of jets. Using the classical equations described above, but
with a polytropic index k = 4/3, then O, = 134.16°. This is much greater than the
value of Opay =74.21° obtained with a full relativistic treatment which is impossible.

The analysis made by Icke (1991) is important for jets in which the microscopic motion

of the flow inside the jet is relativistic, but the bulk motion of the flow is non-relativistic.



Chapter V

Shock—cloud collisions

In Chapter I different physical mechanisms to account for the alignment effect in radio
galaxies were discussed. Whatever the physical mechanism responsible for this effect, it
seems that shock waves (Best et al., 2000) are the most important mechanism for producing
the observed radiation, at least for the cases of the small double radio sources.

These shock waves might be due to different causes, but the obvious one is the in-
teraction of the shock at the leading edge of the expanding jet of the radio source with
cold clouds embedded in the intergalactic medium. In order to describe these collisions,
the simplest model is the one described by the interaction of a plane shock wave with
a self gravitating cloud in which magnetic fields and relativistic effects may be present.
This problem requires unattainable computer power in three dimensions and has not been
achieved so far. The best simulation that has been carried out to date is the one in which a
plane parallel shock hits a two dimensional spherical cloud of constant density (Klein et al.,
1994) in which relativistic effects and magnetic fields are not taken into account. This is
of course a very simplified version of the problem, but has a very important conclusion:
the cloud is destroyed due to instabilities after the interaction.

In this chapter we describe a simplified solution to the problem as compared with that
described by Klein et al. (1994). We analyse the interaction of a one dimensional plane
parallel shock which collides with a cold high density region bounded by two tangential
discontinuities (a cloud). Magnetic fields and self gravity of the cloud are not taken
into account. This oversimplification has made it possible to give a complete analytic

description of the interaction.

§26 Background to shock—cloud collisions

The problem of the collision of a shock wave with a cloud has been intensively investigated
in the past by several authors (see for example Klein et al. 1994 and references therein).
The simplest assumption is to consider a cloud for which gravitational effects can be
neglected, magnetic fields are non-important and radiative losses are negligible. The fact

that gravity is not taken into account, makes it possible to consider the density of the cloud
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to be uniform. The complete 3D hydrodynamical problem is extremely complicated, even
under the simplifications mentioned above. However, numerical simulations have been
carried out for this case which ultimately give rise to instabilities causing a complete
disruption of the cloud (Klein et al., 1994).

This chapter describes how the solution of the one dimensional problem can be ob-
tained. It has been argued in the past that at least for the case in which the density
contrast is high, i.e. the ratio of the cloud’s density to that of the external environment
is high, the problem has to be very similar to that found in the problem of a collision of
a plane parallel shock with with a solid wall (Spitzer 1982, McKee 1988).

With these considerations in mind, the present discussion aims to give a simple ap-
proach to solve a particular case of the whole problem. In the description of the solution
of the problem of the collision between a plane parallel shock and a plane parallel cloud,
it is assumed that the specific volume in the cloud is a first order quantity. In other words
solutions are given for the case in which the density of the cloud is much greater than

that of the surrounding environment.

§27 General description of the problem

Consider two plane parallel infinite tangential discontinuities. The cloud, or internal region
to the tangential discontinuities has uniform pressure p. and density p.. The environment,
or external region to the cloud has also uniform values of pressure p; and density p;
respectively. A plane parallel shock wave is travelling in the positive x direction and
eventually will collide with the left boundary of the cloud at time t=ty <0. By definition,
the density of the cloud is greater than that of the environment. Knowing the pressure p,
and density p» behind the shock wave, it is possible to solve the hydrodynamical problem
thus defined.

The problem of the collision of a shock wave and a tangential discontinuity is well
known (Landau & Lifshitz, 1995) and was first discussed by Hugoniot in 1885. Since at
the instantaneous time of collision the values of, say, the density in front and behind the
shock are p; and p; respectively, the standard jump conditions for a shock no longer hold.
A discontinuity in the initial conditions (first initial discontinuity) occurs.

When a discontinuity in the initial conditions occurs, the values of the hydrodynamical
quantities need not to have any relation at all between them at the surface of discontinuity.
However, certain relations need to be valid in the gas if stable surfaces of discontinuity are
to be created. For instance, the Rankine-Hugoniot relations have to be valid in a shock
wave. What happens is that this initial discontinuity splits into several discontinuities,
which can be of one of the three possible types: shock wave, tangential discontinuity or
weak discontinuity. These newly formed discontinuities move apart from each other with
respect to the plane of formation of the initial discontinuity.

Very general arguments show that only one shock wave or a pair of weak discontinuities
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bounding a rarefaction wave can move in opposite directions with respect to the point in
which the initial discontinuity took place. For, if two shock waves move in the same
direction, the shock at the front would have to move, relative to the gas behind it, with
a velocity less than that of sound. However, the shock behind must move with a velocity
greater than that of sound with respect to the same gas. In other words, the leading shock
will be overtaken by the one behind. For exactly the same reason a shock and a rarefaction
wave cannot move in the same direction, due to the fact that weak discontinuities move
at the velocity of sound relative to the gas they move through. Finally, two rarefaction
waves moving in the same direction cannot become separated, since the velocities of their

boundaries with respect to the gas they move through is the same.

Boundary conditions demand that a tangential discontinuity must remain at the point
where the initial discontinuity took place. This follows from the fact that the discontinu-
ities formed as a result of the initial discontinuity must be such that they are able to take
the gas from a given state at one side of the initial discontinuity to another state in the
opposite side. The state of the gas in any one dimensional problem in hydrodynamics is
given by three parameters (say the pressure, the density and the velocity of the gas). A
shock wave however, is represented by only one parameter as can be seen from the shock

adiabatic relation (Hugoniot adiabatic) for a polytropic gas (c.f. eq.(13.19)):

Vo _ (k+1pe+(k—=1)py
Vi (k=1)ps+ (k+1)py’

(27.1)

where p and V stand for pressure and specific volumes respectively, k is the polytropic
index of the gas and the subscripts f and b label the flow in front of and behind the
shock. For a given thermodynamic state of the gas (i.e. for given ps and V%) the shock
wave is determined completely since, for instance, pp would depend only on V3, according
to the shock adiabatic relation. On the other hand, a rarefaction wave is also described
by a single parameter. This is seen from the equations which describe the gas inside
a rarefaction wave which moves to the left with respect to gas at rest beyond its right
boundary (c.f. egs.(14.11)-(14.14)):

CR =cC4 + %(KC — 1wy, (27.2)

PR = P4 {1 + %W}MKC” , (27.3)
PR =Da {1 + %%}ZKC/(KC” , (27.4)
WR:—KC%H (04—}—%). (27.5)

where ¢4 and cg represent the sound speed behind and inside the rarefaction wave re-
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spectively. The magnitude of the velocity of the flow inside the rarefaction wave is wg in
that system of reference. The quantities p4 and pr are the pressures behind and inside
the rarefaction wave respectively. The corresponding values of the density in the regions
just mentioned are p4 and pg.

With two undetermined parameters, it is not possible to give a description of the
thermodynamic state of the gas. It is the tangential discontinuity, which remains where
the initial discontinuity was produced, that accounts for the third parameter needed to
describe the state of the fluid.

When a shock wave hits a tangential discontinuity, a rarefaction wave cannot be trans-
mitted to the other side of the gas bounded by the tangential discontinuity. For, if there
were a transmitted rarefaction wave to the other side of the tangential discontinuity, the
only possible way the boundary conditions could be satisfied is if a rarefaction wave is
reflected back to the gas. In other words, two rarefaction waves separate from each other
in opposite directions with respect to the tangential discontinuity that is left after the
interaction. In order to show that this is not possible, consider a shock wave travelling in
the positive x direction, which compresses gas 1 into gas 2 and collides with a tangential
discontinuity. After the interaction two rarefaction waves separate from each other and a
tangential discontinuity remains between them. In the system of reference where the tan-
gential discontinuity is at rest, the velocity of gas 2 is given by v, =— fgi v/—dpdV, accord-
ing to eq.(14.5), where p3 is the pressure of gas 3 surrounding the tangential discontinuity.
Accordingly, the velocity of gas 1 in the same system of reference is v :—ﬂ:; V—dpdV.
Since the product —dpdV is a monotonically increasing function of the pressure and

0 < p3 < pi then:

P1 P2

vV—dPdV — J v—dPdV.

P1

The difference in velocities v; — vy has the same value in any system of reference and so,
it follows that vy < vo, in particular in a system of reference in which the incident shock
is at rest. However, for the incident shock to exist, it is necessary that v; > v», and so two
rarefaction waves cannot be formed as a result of the interaction.

So far, it has been shown that after the collision between the shock and the boundary
of the cloud, a first initial discontinuity is formed. This situation cannot occur in nature
and the shock splits into a shock which penetrates the cloud and either one of a shock,
or a rarefaction wave (bounded by two weak discontinuities) is reflected from the point of
collision. With respect to the point of formation of the initial discontinuity, the boundary
conditions demand that a tangential discontinuity must reside in the region separating
the discontinuities previously formed.

In a shock wave, the velocities (v) in front and behind the shock are related to one

another by their difference:
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v — vp =/ (Po— Pi)( Vi — V), (27.6)

according to eq.(13.20) where the subscripts f and b label the flow of the gas in front and
behind the shock wave.

If after the first initial discontinuity two shock waves separate with respect to the point
of collision, then according to eq.(27.6) the velocities of their shock front flows are given
by v :—\/(Dg —p1)(Ve— V3:) and v = \/(pg, —1p2)( V2 — V3), where the regions 3 and
3’ bound the tangential discontinuity which is at rest in this particular system of reference

(see top and middle panels of fig.(V.1)). Due to the fact that p3 > p, and because the

difference v» — v, is a monotonically increasing function of the pressure p3, then:
v2 — U > (P2 — PV {2 Ve/ (ke = 1) P1 + (ke + 1) P2,
according to the shock adiabatic relation. Since vy —w, is given by eq.(27.6), then:

Vi . Ve
(k=D +(k+p2/P1 = (ke = 1) + (ke + V)p2/pP1”

(27.7)

where k and k. represent the polytropic indexes of the environment and the cloud respect-
ively. V7 and V. are the specific volumes on the corresponding regions. In other words,
a necessary and sufficient condition to have a reflected shock from the boundary of the
two media, under the assumption of initial pressure equilibrium between the cloud and
the environment, is given by eq.(27.7). Since for the problem in question V7> V. and the
polytropic indexes are of the same order of magnitude, a reflected shock is produced.

In the same way, at time t=0 when the transmitted shock reaches the right tangential
discontinuity located at x =0, another (second) initial discontinuity must occur. In this
case, we must invert the inequality in eq.(27.7), change k by k. and p2 by ps, where p3 is
the pressure behind the shocks produced by the first initial discontinuity. Again, using the
same argument for the polytropic indexes, it follows that after this interaction a rarefaction
wave bounded by two weak discontinuities must be reflected from the boundary between
the two media. As a result of the interaction, once again, the boundary conditions demand
that a tangential discontinuity remains between the newly formed discontinuities.

This situation continues until the rarefaction wave and the left tangential discontinuity
of the cloud collide at time t=71>0. At this point, two rarefaction waves separating from
each other from the point of formation will be produced once a stationary situation is
reached, and a tangential discontinuity will separate the newly formed discontinuities.
One could continue with the solution for further reflections of the shock and rarefaction

waves but, for the sake of simplicity, the calculations are stopped at this point. Fig.(V.1)



¥ O WJAART /AN VU U AT ORI ANT LN

2 : 1 C 1
Vs
v, =
—
I t<t<
2 Vg 3 3 . C 1
1 I\/
1 Ig- VC
\/2 ' ' -
— } ' “
l I ~—] t<t<0
7 3 3 1 R 4| 4w 1
! - H s
W VYA —
N W, < <— | -2 W
Wi =-— | - =
e | P + Jost<r ]

Figure V.1: An incoming shock travelling to the right (top panel) hits a tangential
discontinuity at time tp < 0. This produces two shocks moving in opposite directions
with respect to the place of formation (middle panel). When the transmitted shock into
the cloud (region C) collides with its right boundary a reflected rarefaction wave (region
R) bounded by two tangential discontinuities and a shock transmitted to the external
medium (lower panel) are formed. Arrows represent direction of different boundaries, or
the flow itself. The numbers in the figure label different regions of the flow. Dashed lines
represent shocks, dash-dot are weak discontinuities and continuous ones are tangential
discontinuities. The system of reference is chosen such that the tangential discontinuities
which are left as a result of the collisions are always at rest.

shows a schematic description of the solution described above in a system of reference such
that the tangential discontinuities which are left as a result of the different interactions
are at rest. The numbers in the figure label different regions in the flow. A more detailed
analysis follows in sections §28 and §29.

§28 First initial discontinuity

According to fig.(V.1), after the first initial discontinuity the absolute values of the velo-
cities (v) of the flow are related by:

w + U = vy, (28.1)

With the aid of eq.(27.6), the velocities of eq(28.1) are given by:

v = (p2—p1)(Vi— V), (28.2)
2 =(ps—p1)(Ve— V3), (28.3)
vs = (p3 —p2)(Va— V3). (28.4)

Inserting eqgs.(28.2)-(28.4) into eq.(28.1) and substituting for the specific volumes from

eq.(27.1), one ends up with a relation which relates the pressure p3 as a function of py,
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P17 and the polytropic indexes in an algebraic linear form. Straightforward manipulations
show that the resulting equation does not have an easy analytic solution, even for the

particular cases in which a strong or weak incident shock collides with the cloud.

In order to find a set of analytic solutions, let us first describe a particular solution
to the problem. If we consider a cloud with an initial infinite density -a solid wall, then
eq.(28.1) takes the form vy =wy4, and a “zeroth order” solution is found (Landau & Lifshitz,
1995):

P3, _ ('3K—1)pz—’(v<—1)p1’ (28.5)

P2 (k=1)p2+(k+1)p;

where p3, is the value of the pressure behind the reflected and transmitted shocks for the
case in which the cloud has specific volume V. =0. For this particular case, eq.(28.5)
determines p3, as a function of p; and p,, which are initial conditions to the problem.
Due to the fact that the gas is polytropic, this relation is the required solution to the
problem.

In order to find a solution more appropriate to the general case, we can make the

approximation that V. is a first order quantity, that is:

P3 =3, +P3, (28.6)
Vi = Vgo + V;, (28.7)
Vy = Vi, (28.8)

where the quantities with a star are of the first order and the subscript 0 represents the
values at zeroth order approximation. Substituting egs.(28.6)-(28.8) into egs.(28.3)-(28.4)

gives:

UZZ = UZZ() - V;(p3o _DZ) +p§( VZ - V30)» (289)

ve = (p3, —P1)( Ve — V3. (28.10)

From the shock adiabatic relation, eq.(27.1), and egs.(28.6)-(28.8) it follows that

Vi, (k+1)p2+(k—1)p3,

V2 ~ (k= Tpat (cF Dps,’ (28.11)
V;, _ (ke +1)p1 + (ke )p30 (28.12)
Ve Kc_1)p1+(Kc+1)p30

Vi__ 4KP2p; (28.13)

Va2 (k= T)p2+ (k+ 1)p3
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Substituting eqs.(28.9)-(28.10) and eq.(28.13) in eq.(28.1) gives the required solution:

17
by __Ye (“+B), (28.14)
P2 V2 n

_ (&_m) (1 _v_;,)

P2 P2 Vc '
= (1 _@) (1@_1) (k=1 —(k+1)V3,/ V2
1) P2 (k=1 + (k+1)p3, /P2’

V- 1% vV
o) (200 )
Ve \ P2 P2 P2 Va Ve

The specific volumes V3, and V7, are given by eq.(28.11) and eq.(28.12) respectively. For

where:

completeness, approximations to eq.(28.14) for the case of a very strong incident shock

and that of a weak incident shock are given:

* —
P: _ 4t (k+1) Vg (3K 1 4 k') (28.15)

P2 (Bk—1) (k=12 V; \ke+1

E_fz ¥ (\/> \/;> (28.16)

where:

and (=(p2—p1)/p1< 1 in the weak limit. Fig.(V.2) shows a plot of the pressure p3 as
a function of the strength of the incident shock. It is interesting to note that even for
very strong incident shocks the ratio p3/p, differs from zero, which follows directly from
eq.(28.5) and eq.(28.15). This simply means that the reflected shock is not strong, no
matter what initial conditions were chosen.

There are certain important general relations which follow from these results. Firstly,
by definition the pressure p, behind the shock is greater than the pressure p; of the
environment. Now consider a strong incident shock. Since p3 >p2 > p1, it follows that
the shock transmitted into the cloud is very strong. Also, the reflected shock does not have
to compress the gas behind it too much to acquire the required equilibrium and so, it is
not a strong shock. This last statement is in agreement with eq.(28.15). In general, for any
strength of the incident shock, since the inequality p3 >p2 >p; holds, continuity demands
that the reflected shock cannot be strong and, more importantly, that the penetrating
shock is always stronger than the reflected one.

Secondly, very general inequalities are satisfied by the velocities vy, v, v as defined
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Figure V.2: Variation of the pressure p3 behind the transmitted shock into the cloud
as a function of the strength of the initial incident shock. The continuous line shows the
case for which the cloud is a solid wall with infinite density. The dashed curve is the
solution at first order approximation in which the cloud’s specific volume is a first order
quantity. The acoustic approximation in which the incident shock is weak, to the same
order of accuracy, is represented by a dot-dashed curve. The perturbed solutions were
plotted assuming p./py = 100 for polytropic indexes k = k. =5/3, corresponding to a
monoatomic gas.

in fig.(V.1). For instance:

Vgl > 3. (28.17)

This result follows from the fact that Viuy/( V3— V) > v holds, and the left hand side of

this inequality is just v according to mass flux conservation across the reflected shock.

On the other hand, from eq.(28.3) and eq.(28.4), since p2 >7p it follows that a necessary
and sufficient condition for ) > . to be true is that V,— V3> V.—V3,. This last condition
is satisfied for sufficiently small values of V.. To give an estimate of the smallness of
the cloud’s specific volume needed, note that a necessary and sufficient condition for
Vo— V3> V.— V3 to be valid is:

Va(p3 —p2) Velpz—p1)
(k—=Np2+(k+1)p3 "~ (ke — p1 + (ke + 1)p3’

(28.18)

according to the shock adiabatic relation for the transmitted and reflected shocks. Since

P3>Pp2>p1 and V)< Vq it follows that:
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Vi > Ve
(k=1)+(k+1)pa/P1 ~ (ke = 1) + (ke + 1)p3/P1’

(28.19)

which is very similar to eq.(27.7). In the same fashion, under the assumption that the
polytropic indexes are of the same order of magnitude, eq.(28.19) implies V< V7, which
was an initial assumption. Although eq.(28.19) is not sufficient, because V, is a first order

quantity, we can use in what follows:

v > ve. (28.20)

The inequalities in eq.(28.17) and eq.(28.20) will prove to be useful later when we

choose a more suitable reference system to describe the problem in question.

§29 Second initial discontinuity

Let us now analyse the situation for which 0<t<t. To begin with let us prove that:

wr < v+ YU = U, (29.1)

where the velocities wq, v and v, are defined in fig.(V.1). Suppose that the inequality
in eq.(29.1) is not valid, then, by expressing the velocities as function of the specific
volumes and pressures by means of eq.(27.6) and the fact that p> > p1, p3 > psa and
V41> V3, it follows that p3 > pc; then as the cloud’s density grows without limit, so does
p3. Necessarily, eq.(29.1) has to be valid for sufficiently small values of the cloud’s specific
volume. It is important to point out that since wy =/u;—w;|=u; —wy, the gas in region
2 as drawn in fig.(V.1) travels in the positive x direction. According to fig.(V.1), flows in

region 1 and 3 are related by

W1 — W3 = 1, (29.2)

Let us now prove a very general property of the solution. Regions 2 and 3 are related
to one another by the shock adiabatic relation. Since the gas in regions 3’ and 4 obey a

polytropic equation of state p3/ps=(V4/V3:)¢, it follows that:

Pa _ (Vs')KC(K-l—UVz—(K—UVs
P2 Va) (k+MV3—(xk—=1V2

Now, due to the fact that V3. < Vy < V3, Vi< Vo < V7 and k, k. > 1 for a reasonable
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equation of state, this relation can be written

P 2] S0, s P S0 (29.3)

P2 2 Vi P2
with the aid of the shock adiabatic relation. This result implies that most of the energy
of the incoming shock has been injected to the cloud, no matter how strong the initial
incident shock is. Only a very small fraction of this energy is transmitted to the external
gas that lies in the other side of the cloud. Note that this result is of a very general nature
since no assumptions about the initial density contrast of the environment were made.
This is an important conclusion. All the energy of the shock is dissipated inside the cloud

and so it is important for cloud heating.

In order to continue with a solution at first order approximation in V., note that we

have to use egs.(28.6)-(28.8) together with:

P4 =DP1+ P, (29.4)
Vi = VJ, (29.5)
Var = Vi + VI/, (29.6)

where the quantities with a star are of first order. The velocities w; and w3 can be
expressed as functions of the specific volumes and pressures by means of eq.(27.6), from
which after substitution of eqs.(29.4)-(29.6) it follows that:

wi = —pi Vi, (29.7)
2
w3 =-—— (V/keP3, V31 — 1/keP1 V7). (29.8)
C

The specific volumes behind the transmitted shock and the reflected rarefaction wave
are obtained from the shock adiabatic relation and the polytropic equation of state for

the gas inside the rarefaction wave:

*
Vi =V %‘ , (29.9)
KD
1/xc
Vi = V5 (&) . (29.10)
P1

By substitution of egs.(29.7)-(29.10) and eq.(28.4) in eq.(29.2) the required solution is

found:
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*
Pi _ [k Ve [n oy (29.11)
P2 P2 7

where:

2\/Kc (ke + 1)p1/p2 + (ke — 1)p3,/P2
(ke = 1)p1/P2+ (ke + 1)p3, /P2’
V2 (p3, —p1)/P2
¢ — 1)p1/p2+ (ke + 1)p3, /P2
1/Kc

For completeness, the limits for the case of strong and weak incident shocks are given:

p—‘*‘Z\/—KBK_” P Ve <f+z,> (29.12)
: .

P2 ke + 1(k—1)p2 Vi
i kK [ Ve
Pa _ge /B ]2 20.13
P2 Ke V V3 ( )
with:

2 /Ke
(ke —1)

E,:

p1 K—1 (ke—1)/2xc
P23k —1 '
It follows from eq.(29.12) that ps < p; as the strength of the incident shock increases
without limit. This result was given by the very general argument of eq.(29.3). Fig.(V.3)

shows the variation of the pressure p4 behind the shock transmitted to the environment as

a function of the strength of the initial incident shock, after the second initial discontinuity.

§30 General solution

Having found values for the pressures p} and pj as a function of the initial conditions
P1, P2, V1 and V¢, the problem is completely solved. Indeed, using the shock adiabatic
relation V) is known. With this, the values of V3, V3§, V; and VJ, are determined
by means of eq.(28.12), eq.(28.13), eq.(29.9) and eq.(29.10) respectively. The values for
all the pressures and specific volumes are obtained using egs.(28.6)-(28.8) and eqgs.(29.4)-
(29.6). The velocities of the flow, as defined in fig.(V.1), are calculated either by mass
flux conservation on crossing a shock, or by the formula for the velocity discontinuity
in eq.(27.6). The hydrodynamical values of the pressure pr and demnsity pgr inside the

rarefaction wave come from egs.(27.2)-(27.5).
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Figure V.3: Variation of the pressure p4 behind the transmitted shock into the external
medium as a function of the strength of the incident shock. The continuous line represents
the case for which the cloud has infinite density and so it does not transmit any shock
to the external medium. The dashed curve represents the case for which the cloud’s
specific volume is a quantity of the first order. The dash-dotted curve is the limit for
which a strong (or weak) incident shock collides with the cloud at the same order of
approximation. The perturbed curves were produced under the assumption that p./p1 =
100 for monoatomic gases.

In order to analyse the variations of the hydrodynamical quantities as a function of
position and time, let us now describe the problem in a system of reference in which
the gas far away to the right of the cloud is always at rest, as illustrated in fig.(V.4).
Let xy and x¢. be the coordinates of the left and right tangential discontinuities, xg
and xg, the coordinates of the reflected and transmitted shocks produced after the first
initial discontinuity, xsr the position of the transmitted shock after the second initial
discontinuity and x, and xy, the left and right weak discontinuities which bound the

rarefaction wave. The new velocities are defined by Galilean transformations:

w = v+ v,

Usl = Usl — Uc,

(30.1)

(30.2)

Ugr = Usp + U, (30.3)
VYR = W71 — Wg, ( )
(30.5)

Vsr = W1 + Wgr,

The direction of motion of the flow is shown in fig.(V.4) and it follows from eq.(28.17),
eq.(28.20) and eq.(30.2) that ug points to the left in this system of reference. Since, in the
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Figure V.4: Description of the problem of a collision of a shock with a cloud in a
system of reference in which the gas far away to the right (at x = oo) is always at
rest. Originally a shock is travelling to the right and hits a tangential discontinuity
(top panel). This produces a discontinuity in the initial conditions so a reflected and
transmitted shock are produced; the gas in the cloud begins to accelerate (middle panel).
Eventually the transmitted shock into the cloud collides with its right boundary producing
a “reflected” rarefaction wave bounded by two weak discontinuities (region R) and a
transmitted shock into the external medium (lower panel). In this system of reference
every single discontinuity produced by means of the interaction move to the right, except
for the reflected shock produced after the first collision. Arrows represent the direction
of motion of various boundaries and direction of flow. Numbers label different regions of
the flow. Dashed lines represent shock waves, dash-dotted ones weak discontinuities and
continuous ones tangential discontinuities.

same frame, v, and w point to the right, continuity across a weak discontinuity demands

Vg to behave in the same way.

The tangential discontinuities and the shocks produced by the initial discontinuities
move with constant velocity throughout the gas. This implies that the time at which the

first initial discontinuity takes place is:

A
tyg = — 30.6
0 usr) ( )

where A represents the initial width of the cloud. Hence, the positions of all different

discontinuities for to<t<0 are:

Xsr = Usrt, (30.7)
X1 = —A —uq(t—tg), (30.8)
X = —A 4+ v (t— tp). (30.9)

and for 0<t<, eqs.(30.8)-(30.9) are valid together with
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1
Xq = — (Kc;‘ w3 + c4> + wit, (30.10)
xp = (W) —cq) t, (30.11)
Xsr = Vsrt, (30.12)
X¢r = Wit (30.13)

The time T at which the left tangential discontinuity collides with the left boundary of

the rarefaction wave is given by xy =xXq, and thus:

TC3 = Y to + A. (3014)

Fig.(V.5) shows the variation of the pressure and density as a function of time and position
in a system of reference in which the gas far away to the right of the cloud is at rest.
The width of the cloud varies with time, and it follows from eq.(30.9) and eq.(30.13)

that this variation is given by:

X(t) = O(t)wit + A — ve(t — to), (30.15)

where O(t) is the Heaviside step function. This linear relation is plotted in fig.(V.6).

§31 Summary

In the previous analysis, the problem of a collision of a plane parallel shock wave with
a high density cloud bounded by two plane parallel tangential discontinuities has been
discussed. Radiation losses, magnetic fields and self gravity of the cloud were neglected.
General analytic solutions were found for the simple case in which the ratio of the envir-
onment’s density to that of the cloud’s density is a quantity of the first order.

When the shock collides with the boundary of the cloud, a discontinuity in the initial
conditions is produced. This splits the incoming shock into two shock waves: one which
penetrates the cloud and one which is reflected back to the external medium. When the
transmitted shock into the cloud reaches the opposite boundary, another discontinuity in
the initial conditions is produced, causing the transmission of a shock wave to the external

medium and the reflection of a rarefaction wave from the point of collision.
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Figure V.5: Variation of the pressure p and density p (with respect to the initial
pressure p; and density p; of the environment) as a function of position x (normalised
to the initial width of the cloud A) and dimensionless time t (in units of the time A/c;
—where c¢; is the speed of sound in the external medium). Dashed lines represent shock
waves (S), dot-dashed lines are tangential discontinuities (T'), which are boundaries of
the cloud, and short-long dashed lines represent weak discontinuities (W), which bound
a rarefaction wave. The system of reference was chosen so that gas far away to the right
of the diagram is at rest. The diagram shows the case for which p./p; =10%, and the
polytropic indices correspond to a monoatomic gas.
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Chapter VI

Astrophysical Applications

In the previous chapters we have analysed two types of interactions of radio jets with their
surroundings. The radius of the jet being assumed to be much smaller than the radius of
the cloud. Firstly, the steady passage of the jet through a dense stratified cloud and the
consequences on its structure were discussed in Chapters III and IV. The overall structure
of the cloud is not changed as a result of the interaction. Secondly, in Chapter V, the
collision of a shock wave with a dense stratified region in one dimension was analysed.
This is related to the initial stages of the interaction between the shock wave associated
with the head of an expanding jet and a cloud. In this case, the overall structure of the
cloud varies with time.

The present Chapter discusses the consequences of the results obtained so far and

applies them to astronomical sources.

§32 Radio trail sources

As it was mentioned in section §5, radio trail sources show considerable “real” bending
of their jets with deflection angles of about 90° in many cases. Fig.(I.3) and fig.(VI.1)
show two typical examples of these types of radio sources. As can be seen from both of
them, the jets follow semicircular paths and bend up to about 90°. The jets seem to loose
collimation after the complete bending has occurred.

Since it is the proper motion of the host galaxy with respect to the intergalactic medium
that produces the curvature of the jets, the deflection angle cannot be greater than 90 °.
The results presented in eq.(25.7) show that jets which have a relativistic equation of
state and a bulk relativistic motion of the gas within its jet, cannot be deflected more
than ~50°. Since the deflections of radio trail sources are greater than this value, this
result implies that most radio trail sources generate shocks at the end of their curvature.
However, observations (see for example Eilek et al., 1984; O’Dea, 1985; de Young, 1991, and
references within) show that the velocity of the material of the jets < 0.2-0.3c. Therefore,
the bulk motion of the flow is non-relativistic, despite the fact that the gas inside the jet

has a relativistic equation of state. The calculations which resulted in eq.(25.7) can be
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Figure VI.1: Radio trail galaxy 3C 129. The image is an NVSS (Condon et al.,
1998) radio map with peak flux of 7.5414 x 1072 Jybeam*. The levels are at
7.5414 x 107 x (—5,10,15,...,95) (Leahy & Yin, 2000).

repeated for this circumstances. To do this, a polytropic index of 4/3 in the calculations

made in section §25 has to be used for the classical case. The result is that (Icke, 1991):

Omax = 134.16°. (32.1)

In other words, these type of jets will develop a terminal shock if their jets bend more
than ~135°. This seems to be the reason why all radio trail sources are able to bend so

much without disrupting their internal structure.

As was discussed in section §25, the value of the bending angle in eq.(32.1) is an upper
limit. The formation of an internal shock depends on the particular trajectory that a jet
follows. In order to see if a specific jet will develop a shock at the onset of its curvature, the
upper plot made in fig.(IV.4) is repeated in fig.(VI.2) for the case in which the polytropic
index of the flow inside the jet has a value of 4/3.

In order to find out whether radio trail galaxies generate internal shocks at the onset
of their curvature due to the deflection of their jets, we can make use of eq.(5.1), which

can be rewritten as:
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Figure VI.2: Plot of the maximum ratio D/R ( D is the with of the jet and R is the
radius of curvature of the curved trajectory it follows) as a function of the difference
0 — 0, where 0 is the deflection angle and 8, is the maximum allowed bending angle a
jet can have in order not to produce a terminal shock. This plot is similar to the ones
produced in Chapter IV (see fig.(IV.4)). The trajectory of the jet was assumed to be
a circumference and the plot refers to parameters such that a shock at the onset of the
curvature is produced. Jets with parameters such that their values lie down below the
curve are stable against the generation of internal shock waves at the beginning of the
trajectory. This plot differs from the ones presented in fig.(IV.4) in that the polytropic
index in the flow of the gas inside the jet is assumed to be 4/3 and the bulk motion of
the flow inside the jet is considered to be non-relativistic (Icke, 1991). The numbers in
the plot label the different values of the Mach number that the flow has.

D pevé
— = . 32.2
R pjv? (32:2)

In this relation D and R represent the width of the jet and the radius of curvature of
its trajectory respectively. The right hand side of this equation can be calculated from
observations. However, it is important to mention that it is difficult to know the precise
value of the width of the jet D since it is not clear in most observations that the jet is
resolved. It is also difficult to fit the radius of curvature of the source because of projection
effects. Nevertheless, the symmetric U shape from typical radio trail galaxies imply that
the sources do not lie too far away from the plane in the sky and so, the obtained value
for the radius of curvature should not differ too much from its real one. The fraction
on the left hand side of this relation is the abscissa of the plot in fig.(VI.2). Typical
values (Forman & Jones, 1982; Eilek et al., 1984; de Young, 1991) for radio trail galaxies,

obtained using a mixture of observations and various different theoretical models for radio
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trail galaxies, are: a density of the intergalactic medium m,~10"3cm 3, velocity of the
host galaxy vy ~10%kms !, particle number density of the jet n;~10 'cm 2 and a jet
velocity vj~10*kms . With these values, it follows that the ratio D/R~10 2. In other
words, radio trail sources are typically far below the curve in fig.(VI.2) and they will not
generate internal shocks at all. This is the reason why the jets in this type of radio sources
can bend so much, maintaining their collimation and avoiding the generation of internal
shocks.

Let us analyse in more detail the archetypical elliptical radio galaxy NGC 1265 (3C 83.1B)
which lies in the outer parts of the Perseus cluster of galaxies (see fig.(I.4)). The radial
velocity of this radio galaxy with respect to the mean velocity of the Perseus cluster is
~2000kms~! and the Mach number of the flow is M~2-4 (Begelman et al., 1979; O’Dea
& Owen, 1987a). As can be seen from fig.(I.3), the total bending angle is 8~80°. This is
much less than the maximum allowed value of Oyax ~135 ° calculated in eq.(32.1). In other
words, no terminal shock is present in the radio source. In order to see whether a shock
at the onset of the curvature is present, we make use of eq.(32.2) and the observed values
for NGC 1265 (Begelman et al., 1979; O’Dea & Owen, 1987b; de Young, 1991; Sijbring
& de Bruyn, 1998) of v;~10°km /s, nj~105cm 3, ve~10%km /s, and ne~10"1cm 3.
With these values, the ratio D/R~10"3. Comparison of this with the plot in fig.(VI.2)

indicates that the jets do not generate an internal shock at the onset of the curvature.

The ratio D/R can also be calculated geometrically from the figures themselves. For
example, let us take the case of the radio trail source NGC 1265 shown in fig.(I.4). As
can be seen from the figure, two major deflections in each jet are observed. The first
deflection is not very strong, and bends the jet only about 20°. The second one takes the
jet from this bent angle up to ~80°. As was mentioned above, the value of 80 ° is less than
the maximum possible bending angle calculated in eq.(32.1) and so, no terminal shock is
produced. From fig.(I.1) the ratio D/R at the onset of the curvature was calculated by
fitting a circle to the trajectory using the nucleus of the radio source and two adjacent
points around it. The width of the jet is calculated from the resolved image. It then
follows that D/R~0.05. This value is of the same order of magnitude as the value found
above using eq.(32.2).

We can apply this geometrical technique to various different sources. Fig.(VI.1) shows
an NVSS image of the radio source 3C 129. Just as in the radio galaxy NGC 1265, the jets
seem to have two major deflections. The first curves the jets up to ~40° and the second
deflects them to an angle of ~90°. By taking three points on the first curved trajectory,
the ratio D/R~0.07. According to the diagram in fig.(VI.2) it follows that the jet will not
develop a shock at the onset of the curvature. In other words, the jets in 3C 129 do not

generate any internal shocks due to their bending.
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§33 Bent jets in powerful radio sources

We have seen in the previous section how the jets in radio trail sources can be stable against
the formation of internal shock waves generated because of their bending. Most powerful
double radio sources, in particular radio galaxies and quasars show almost no deflection
of their jets as they propagate through the interstellar and intergalactic medium. As we
saw in Chapter III, this behaviour occurs because the bulk velocity of the flow inside the
jet is highly relativistic (up to 0.99 c in some cases according to observations). One of the
best examples of this behaviour is the radio galaxy Cygnus A, shown in fig.(I.1). As can
be seen in the image, the jet has a very well defined straight structure. However, when
the jet approaches half the width of the radio lobe it seems to bend through ~20° and
then goes on to the hotspots. In exactly the same way as it was done in the last section,
the ratio D/R can be calculated and the result is that D/R~0.01. This value lies well
below the curve plotted in fig.(IV.4) for a bending angle ~20°. This bending angle is also
well below the upper limit of ~50° calculated in eq.(25.7). In other words, the deflection
of the western jet in Cygnus A does not generate any internal shocks.

Fig.(VI1.3) shows a VLA radio map of the FR I plumed radio galaxy 3C 31. The jets
have large scale arcs before they bend an angle ~ 30 °. This angle is less than the maximum
bending angle calculated in eq.(32.1) for a non-relativistic bulk motion of the flow. From
the figure, the ratio D/R~0.1 at the onset of the curvature, and the angle the jet bends
at the onset of the curvature is ~30°.

Applying the previous technique to radio quasars is somewhat more complicated due
to orientation effects. According to unification models for strong radio sources, namely
the 3CR radio quasars and radio galaxies (see section §3), the jets of radio quasars are
observed within a cone of half-angle roughly 45° to the line of sight. This means that
whatever the deflection angle we observe on the plane of the sky, it would certainly differ
from the real deflection. Figs.(VI.4)-(VI1.5) show two radio quasars with very well defined
deflections. Bearing in mind that the uncertainties in any calculation done for quasars
with respect to their bending angle are most probably incorrect, in what follows, we
discuss briefly the implications of this result.

In the case of the quasar 3C 175 shown in fig.(V1.4), the deflection angle is ~25 ° which
is less than the maximum bending angle ~50 ° for relativistic flows. The ratio D/R~0.02
and the deflection angle at the onset of the curvature is ~ 15°. This pair of values lie well
below the curve of the appropriate diagram of fig.(IV.4). For the quasar 3C 334 the total
deflection angle is ~40°. The ratio D/R~0.1 and the bending angle at the onset of the
curvature is ~10°. According to eq.(25.7) and fig.(IV.4) this means that the jet does not
generate internal shocks due to its deflection.

The radio galaxy 3C 34 at redshift z=0.69 shown in fig.(VI.6) is very peculiar. Best
et al. (1997) suggested that the western radio jet of this source has undergone a collision

with a galaxy giving rise to a jet—galaxy interaction. In the top panel of fig.(VI.6), the
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Figure VI.3: Radio Image of the radio galaxy 3C 31. This radio galaxy is an FR I
(plumed) galaxy at a redshift 2z=0.0169. The left image is a VLA 1.4 GHz radio image
at 5.5 arcsec resolution. This image shows a large distortion (wiggling) of both plumes of
the radio jet. The right image is a VLA 8 GHz radio image of the same radio source, but
zoomed about the core. This image is a VLA radio map at 0.3 arcsec resolution. Both
images taken from Laing et al. (2000); Bridle (2000).

Figure VI.4: Radio Image of the quasar 3C 175. The quasar lies at a redshift of z~0.768.
The radio image was taken with the VLA at 4.9 GHz with 0.35arcsec resolution (Bridle,
2000; Bridle et al., 1994).
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Figure VI.5: Radio Image of the quasar 3C 334. The quasar is at a redshift z=0.555.
This radio image was taken with the VLA at 4.9 GHz with 0.35 arcsec resolution (Bridle,
2000; Bridle et al., 1994).

emission regions labelled as n and s represent two hot spots in the western lobe of the
source and the region a is what the authors identified as a galaxy which was assumed to
be at the same redshift as 3C 34. The idea that object a is an ordinary galaxy in the
cluster containing 3C 34 is very natural. First of all, this object presents an elongated
structure along what appears to be one of the axes of the radio source (blue line in
fig.(V1.6)). Secondly, the deep radio map (bottom map on fig.(VI1.6)) shows an enhanced
region of radio emission located to the north of object a. The radio spectral index of this
area increases away from the hotspot and it is not as steep as the rest of the radio lobe.
This means that this region shows a back flow emanating from the hotspot n (Blundell,
1994). This back flow seems to pass around the object a rather than through it, which is
consistent with the idea that object a is in the same cluster of galaxies as the one 3C 34

belongs to.
The 1.4 — 5 GHz spectral indices of hotspots s and n are 0.83 4+ 0.03 and 0.92 4+ 0.03

respectively. Since the spectral index is flatter for hotspot s, this suggests that it is younger
as compared to hotspot n. For comparison, it is important to note that the spectral index
of the eastern hotspot is 0.82 + 0.03.

Cox et al. (1991) showed that a steadily precessing jet could initially make an impact
on the wall of the cocoon producing a jet curvature as it feeds its primary hot spot. As
the precession continues, the jet then interacts with the cocoon at a very sharp angle and
it is then able to produce a new —primary— hotspot while still feeding the old —secondary-
hotspot which is now located downstream. This scenario could be the explanation of the

observed features in the radio galaxy 3C 34. With this model, the double hot spot and
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Figure VI.6: Optical image of the radio galaxy 3C 34 with VLA radio contours su-
perimposed. Top: Image at 545nm taken with the Hubble Space Telescope with over-
laid radio contours at 8.4 GHz taken with the VLA A-Array. The contour levels are
120 wly x (2, 4, 8, 16). Bottom: HST image at 865 nm with overlaid contours of the ra-
dio emission at 5 GHz as seen using the B and C arrays of the VLA. The contour levels are
120wy x (1, 2, 4, 8, 16, 32, 64, 128). Both images from Best et al. (1997). The blue line
is what seems to be the old axis of the radio galaxy. The green one is what appears to be
its current axis. The red line shows what the path of the west jet will be if a deflection of
the jet would have been caused by the collision with the galaxy underlying the emission
labelled a.

the difference in ages of their electron populations is automatically satisfied. This means
also that the radio jet of 3C 34 was previously lying in the direction of the blue axis of
fig.(V1.6) and that it is currently aligned with the green axis. The collision of the radio
jet of 3C 34 with the galaxy underlying object a occurred when the jet was aligned with

the blue axis and star formation was induced due to this interaction.

However, there is another scenario which could well explain the features observed in
3C 34. If the west radio jet collides with the galaxy underlying object a, this interaction
could deviate the jet from its original trajectory, as it is pictorially represented by the red
curved line in fig.(VI.6). The appearance of a double hot spot could then be explained
as follows: originally, the western jet was lying along the blue line of fig.(VI.6) and the
proper motion of the orbital companion object a in the cluster resulted in it intersecting
the path of the jet which made it follow a curved trajectory such as that shown by the
red line. It could also have been that the precession of the jet eventually interacted with
object a giving rise to the observed deflection. No radio jet has been observed, but the

narrow width of the object a would be consistent with values of D/R < 0.01.

If the jet in 3C 34 was bent because of the interaction with a typical galaxy for which

its gas is in pressure equilibrium with a dark matter halo, then we can use the standard
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values presented in section §21. First of all, the western jet in 3C 34 has a bending angle
0 ~ 10°, so that the deflection angle \ ~ 170°. If we assume that the flow inside the jet
moves with a velocity v = 0.99¢, it follows from the bottom diagram in fig.(II1.8) that
sin @ ~ 0.3, or o ~ 17°. On the other hand, the value 6 ~ 10° is well below the upper
limit of ~ 50° calculated in eq.(25.7), so that at least no terminal shock will be produced
by the deflection of the jet. From the bottom plot of fig.(IV.4) and because the angle
0, < 1 for a high relativistic flow, it follows that if the trajectory of the jet in 3C 34 is
circular, then in order not to produce an internal shock at the onset of the curvature, the
ratio D/R has to be less than ~0.08.

§34 Discontinuities in jet—cloud collisions

As it was discussed in Chapter V the one dimensional collision between a shock and a
cloud generates two types of strong discontinuities: shock waves and rarefaction waves. It
still remains an open question as to how good these solutions are for understanding the
more general three dimensional case. At least it should be expected that far away from
the boundaries of a spherical cloud, where the interaction can be considered plane—parallel
the solution should not differ too much from the one dimensional case.

When the two dimensional case is considered, more strong discontinuities (shocks) are
generated and the cloud is unstable due to the generation of Raleigh—Taylor and Kelvin—
Helmholtz instabilities (Klein et al., 1994). This is seen analytically as follows.

When a shock wave propagates through the interstellar or intergalactic medium with a
velocity vy and collides with a cloud, it drives a shock wave into it (cf. Chapter V). Let us
assume that the incoming shock is strong so that the Mach number M > 1. Under this cir-
cumstances, the postshock pressure is about pevg (Landau & Lifshitz, 1995), with pg being
the density of the external medium around the cloud. In the same way, the pressure behind
the shock in the cloud is about p.vZ, where p. is the original density of the cloud, and v,
is the the shock velocity inside the cloud. These two pressures most be comparable, and
so (Bychkov & Pikelner, 1975; McKee & Cowie, 1975; Klein et al., 1994):

vy~ 20 (34.1)

WV
where ¥ = p./pe is the density contrast between the cloud and the intercloud envir-
onment. The time for the shock in the intercloud medium to sweep across the cloud

is:

2A
e = 222 (34.2)

Ub

in which Ag is the initial radius of the cloud. The characteristic time for the cloud to be
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“crushed” by the shocks inside the cloud is Ag/vs. From this and eq.(34.1) it follows that

the cloud crushing time is:

1/2A
o= X 20 (34.3)
Uy

After the blast wave has swept over the cloud, the shocked cloud is subject to both,
Kelvin-Helmholtz and Rayleigh—-Taylor instabilities (Klein et al., 1994). For x > 1
the timescale txy for the growth of Kelvin-Helmholtz instabilities for perturbations of
wavenumber k parallel to the relative velocity we between the cloud and intercloud me-
dia is ti}{ = kwre/X'/? (Chandrasekhar, 1961; Klein et al., 1994). In other words, the

Kelvin-Helmholtz growth time is comparable to the cloud crushing time:

tkH _ Ub/Urel
tec kAO ‘

(34.4)

Short wavelengths have a fast growth, but longer wavelengths (kAy ~ 1) are far more
disruptive.

The blast wave accelerates the cloud in two stages (Klein et al., 1994). Firstly, the
cloud shock accelerates it to a velocity vs. Secondly, the flow of shocked intracloud gas
accelerates it until it is comoving with the flow behind the incoming shock, which for
a monoatomic gas has a velocity of 3v,/4. For a large density contrast, the cloud shock
velocity is small and the acceleration is dominated by the second stage. Let v, be the mean
velocity of the cloud, w; the velocity of the shocked intercloud medium and v/ = |41 — v/
the magnitude of the velocity of the cloud relative to the shocked intercloud medium.
With these, the equation of motion of the cloud can be written (Klein et al., 1994; Landau
& Lifshitz, 1995):

du/! 1 2
me Tt ——ECDpllvc A, (34.5)

where M. is the mass of the cloud, Cp ~ 1 is the drag coeflicient, pi; ~ 4po is the density
of the shocked intercloud medium and A is the cross section area of the cloud. If this cross
section remains constant then A ~ T[A% and the mass of the cloud m¢ ~ p.V. in which
the volume of the cloud V. « mA}. Since the velocity v/ ~ vp, it follows that eq.(34.5)

defines a characteristic drag time tqrag,o for a strong shock given by (Klein et al., 1994):

XAo _ X1 /Ztcc

- CD Up CD

JCdrag,O (34.6)

The deceleration of the cloud initially proceeds on the drag timescale tgrago. This

gives a deceleration g ~ vp/tdrago, which corresponds to a Rayleigh-Taylor growth time



QU AJALJN/RT LN L AN VA AT AN JAJA U U AT NI ANT LN

given by t;{r} ~ /gk (Chandrasekhar, 1961). This instability has a growth time of the
order of the cloud crushing time (Klein et al., 1994):

trT 1

~

tee  (kAg)V?

(34.7)

The above results suggest that the cloud will be destroyed in a time related to the
cloud crushing time. In fact, numerical simulations carried out by Nittmann, Falle &
Gaskell (1982) and Klein, McKee & Colella (1994) show that the cloud destruction time

is indeed a few times the cloud crushing time.

The two dimensional problem of the collision between a shock wave and a cylindrical
cloud of constant density can be described as follows according to numerical simulations
(Klein et al., 1994). Four stages can be identified in the collision. (i) When the incoming
plane parallel shock wave hits the cylindrical cloud two shocks are formed. One penetrates
the cloud and another one is reflected from the point of impact (cf. Chapter V). The
reflected shock settles into a standing bow shock in a time of the order Ag/v, = tic/2.
(i1) The next stage is shock compression of the cloud. After a time ~ tjc the flow around
the cloud converges on the axis behind the cloud, producing a high pressure reflected
shock in the intercloud medium and driving a shock into the rear of the cloud. The
shocks produced at the sides of the cloud are weaker than those at the front and the back
of the cloud. This is due to the fact that the pressure is a minimum at the sides of the
cloud. As a result of all this, the cloud is compressed into a thin pancake, with its traverse
dimension reduced by a factor of 2. The collision of the transmitted shock into the cloud
with the shock coming from the rear produces further compression. (iii) When the shock
transmitted into the cloud reaches the opposite side of the cloud it transmits a shock to
the intracloud medium and reflects back a rarefaction wave. This produces the so called
reexpansion stage. At the same time, the low pressure at the sides of the cloud compared
to that on the axis causes the cloud to expand laterally. This lateral expansion continues
up to a time of a few cloud crushing times. (iv) Finally, instabilities and differential forces
due to the flow of the intercloud gas past the cloud makes the last stage: cloud destruction.

This causes the cloud to fragment.

As it is seen from the above discussion and from the results presented in Chapter V,
the one dimensional case and the two dimensional one are quite different. This is mainly
due to the fact that in the two dimensional case the cloud is of a finite size (cylindrical
cloud) whereas in the one dimensional case it is not (plane parallel cloud). However,
the most important strong discontinuities (shocks and rarefaction waves) are produced
in both cases. From the results of Chapter V it follows that the pressure behind the
transmitted shock (for a large density contrast) should be about six times the pressure in
the intercloud medium, as would be expected from the reflection of a strong shock with

a solid wall (Spitzer, 1982; McKee, 1988). However, such a high pressure has not been
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seen in the numerical simulations by Bedogni & Woodward (1990) and Klein, McKee &
Colella (1994). It seems that this high pressure exists only as the flow is one dimensional
or it does happen for such a short time that it does not show up in the simulation.

Despite all of these differences, the perturbed solution found in Chapter V serves as an
upper limit to values of pressures, densities and temperatures and provides a very simple
way of understanding the behaviour of the collision between a shock wave and a cloud in
detail.

An important use of the results presented in Chapter V is to compare the cooling
time behind the transmitted shock wave to the shock crossing time. Let us assume that
the density contrast is 10% (see section §6) and that the shock that penetrates the cloud
after the first initial discontinuity compresses the gas ~ 5 x 10% of its original value, as
shown pictorically in fig.(V.5). The density in the cloud increases by a factor of ~ 3 with
the passage of the shock wave. The temperature of the cloud is enhanced by a factor of
~ 1.6 x 10* of its original value. In other words, if we assume that the temperature of
the cold clouds is ~ 10*K, then the passage of the shock wave is able to increase this
value to ~ 108 K. The dissipation of the heated gas in the cloud, that is, its energy loss
produced by radiation can be calculated from calculations made by Silk & Wyse (1993);
Sutherland & Dopita (1993) and described by Longair (1998). If the cooling function
A is measured in ergscm®s !, then dE/dt = —m?A(T) is the energy loss rate per unit
volume in which E is the energy of the system, t time, n the particle number and T the
temperature of the gas. From the results presented in Longair (1998), it follows that
A(T~108K) ~ 1022 ergscm®s™!. The cooling time Ty = E/|dE/dt| is then given by
Teool ~ 102 yr, where we have used the fact that E = 3nkgT for a fully ionised gas, kg is
the Boltzmann constant and the particle number density of clouds needed for the radio
alignment effect is Ncjouq ~ 103 cm 3 (Best et al., 2000).

The time it takes the incoming shock with velocity v to cross a cloud of width A is
Teross = A/ Us. Typical values for the advance speed of a jet in a radio source are vs ~ 0.1c.
The characteristic size of a cloud needed to produce the observed radio—optical alignment
effect is about 1kpc. This implies that the crossing time is Teross ~ 10% yr. In other words
Teool ~ Teross, 80 thermal instabilities are likely to develop inside the cloud. Because of
this, if a shock wave associated with an expanding jet in a radio source interacts with a
set of clouds in the interstellar and intergalactic medium, it is possible that the optical

emission observed in the alignment effect in radio galaxies is produced.



Summary and conclusions

The interaction of the jets on extragalactic double radio sources has been the central
theme of this work. In Chapter I it was discussed that “real” bending of jets, ie. bending
not produced by projection effects, can be achieved by two mechanisms. Firstly, ram
pressure produced by a wind in the intergalactic medium is able to bend jets which are
non-relativistic. This causes the jets to have a semicircular, or U, shape with the host
galaxy in the pole. Radio galaxies which have this structure are called radio trails.
Secondly, deflections of jets can be achieved if jets pass through a stratified high density
region. In this case it is the gradients of the pressure that make the jet to follow a
non-straight trajectory. Gravitational effects might be important on the deflection of jets
depending on the mass of the stratified density region.

In order to understand this second possibility, the hydrodynamical interaction between
a jet and a cloud was analysed in detail, once the steady state has been reached. This was
carried out in two steps.

In the first case, the bulk motion of the flow in the jet was assumed to be non-
relativistic and the self gravity of the gas in the cloud acting on the jet was included in
the description of the problem. Because the jet was assumed to expand adiabatically it was
possible to calculate the trajectory of the jet by means of an energy equation (Bernoulli’s
law). In addition, assuming that the jet Mach number was sufficiently high, analytic
solutions to the problem were found for the cases in which the cloud was assumed to be an
isothermal sphere and when it was considered to be a gas in hydrostatic equilibrium with
a galactic dark matter halo. Dimensional analysis showed that when gravity is included in
the relevant equations, the whole problem is described by the initial dimensionless Mach
number inside the jet M and the polytropic index k of the gas in the jet. Gravity, through
the gravitational constant G, adds another dimensionless parameter A = G por%/ M%c%
when the stratified density region is an isothermal sphere and pg is the density of the
cloud at the radius rp, where the jet penetrates it. The Mach number at this point is My
and the velocity of sound in the cloud is cp. The parameter A is an indicator of how large
the deflections produced by the gravitational field of the isothermal sphere are from its
straight trajectory. The greater A, the more curved the trajectory is. In contrast, when
the cloud is assumed to be a sphere of gas in hydrostatic equilibrium with a dark matter
halo in a galaxy, the problem also involves the dimensionless number k = —4nGpgq, a®/c2.

The core radius is represented by a, the density of the dark matter halo at its centre is
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Pd,, and the velocity of sound is c,. Just as in the previous case, the parameter & is an
indicator as to how big deflections induced by the pressure gradients in the gas around
the dark matter halo are.

The parameter A has the following physical meaning. Because A has the same value
of 1072/ M% for galactic jets embedded in molecular clouds and extragalactic jets inside
cluster of galaxies, this result provides a clue as to why jets in such different environ-
ments as giant molecular clouds and the gaseous haloes of clusters of galaxies have similar
properties.

In the second case, the bulk motion of the jet was considered to be relativistic, but
the gravitational effects induced by the gas in the cloud were not taken into account.
Under the same assumptions as in the non-relativistic case, it was possible to show that
the trajectory of jets is also determined by the relativistic version of Bernoulli’s equation.
Analytic solutions for jet velocities with a high relativistic Mach number were found for
an isothermal sphere cloud and for gas in pressure equilibrium with a dark matter halo.
Since the flow inside the jet was assumed to have an ultrarelativistic equation of state,
the only parameter that plays an important role in the solutions is the initial velocity of
the flow.

In both, the relativistic and non-relativistic cases, the solutions are extremely sensitive
to variations in velocity. This occurs because the pressure and gravitational force fields
applied to a certain fluid element in the jet are the same at a given position. However,
as the velocity of the flow in the jet increases, there is not enough time for this force to
change the curvature of the jet fast enough, giving rise to very straight jets.

When supersonic flow bends, its characteristics intersect at a certain point in space.
Since the hydrodynamical quantities have a constant value on characteristic lines, this
means that the point of intersection is such that the value of every hydrodynamical quant-
ity is multivalued. This situation cannot happen in nature and a shock wave is created in
order to bypass it. In Chapter IV the problem of the formation of shock waves inside bent
jets was analysed in detail. If the intersection of the characteristic lines occurs outside
the jet, the jet bends without any generation of internal shock waves. However, if this
intersection occurs inside the jet, a shock wave forms and it is potentially dangerous to
the jet. This is because behind a shock wave the normal component of the velocity is
subsonic and collimation can not be achieved. By using a relativistic generalisation of
steady simple waves in classical fluid dynamics, it was possible to describe in detail the
generation of shock waves inside a jet due to this mechanism.

The proper Mach number in a supersonic flow that bends through a continuous curved
trajectory decreases along its path. This implies that at some point, when M 2 1, the rate
of change of the Mach angle with respect to the bending angle increases without limits.
This means that the characteristic lines tend to intersect at the end of the bending, when
the flow is near the transonic point. Jets with Mach numbers between this lower limit and

the maximum allowed value (M = co) do not generate shocks at the end of the curvature.
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The difference between the bending angles evaluated at these last two values of the Mach
number give upper limits for the bending angle of jets. For instance, it was shown in
Chapter IV that for non-relativistic bulk motion of jets with a polytropic index of 5/3,
appropriate to Herbig—Haro jets, this limiting angle has a value of ~ 75°. However, if the
polytropic index has a value of 4/3, for example radio trail sources, the upper limit for
the bending angle is ~ 135°. Relativistic bulk motion of jets with a polytropic index of
4/3, appropriate for classical double radio sources, have an upper limit of ~ 50°. The
reason why relativistic jets can bend less than non-relativistic ones is because the region
of transmission of information from a perturbation, bounded by characteristics, is closer
to the streamlines in relativistic flow. This increases the chances of an intersection of the
characteristics as the jet bends.

In Chapter I the radio—optical alignment effect in powerful double radio sources was
discussed. The optical radiation shows an alignment with the radio source axis rather
than an elliptical structure. The effect fades away as the sources grow larger (~ 10 Myr)
and small sources (~ 50kpc) show strongest aligned optical structures. The morphology,
kinematics and ionisation properties of the emission line gas of these small radio sources
are dominated by the intense effect of shock waves associated with the expansion of the
radio jet through the interstellar and intergalactic medium. It seems that cold clouds
(~ 10*K) embedded in the intergalactic and extragalactic medium of the host galaxy are
able to interact with the bowshock of the expanding radio source in such a way as to
generate sufficient strong shock waves in this interaction to produce the shock ionisation
observed.

In Chapter V the one dimensional interaction between a shock and a cold high density
region bounded by two tangential discontinuities (a cloud) was analysed in detail. It
was shown that as a result of the interaction a discontinuity in the initial conditions was
formed and a penetrating shock wave into the cloud and a reflected shock were produced.
The shock wave that penetrates the cloud is able to hit, accelerate and compress the cloud
until it reaches its opposite boundary giving rise to another (second) initial discontinuity.
As a result, a shock wave is transmitted to the external medium and a rarefaction wave
bounded by two tangential discontinuities is reflected back to the cloud. The rarefaction
wave re—expands and cools the cloud. The important conclusion of this analysis is that
most of the energy that the incoming shock was carrying before the collision is injected
to the cloud. Very little energy is transmitted to the other side of the cloud, regardless of

the strength of the original incoming shock.
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